如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
当前回答
为了给这场11年的大火再添一根柴,我想要一个满足以下条件的解决方案:
只允许使用json.dumps(obj)序列化类FileItem的实例 允许FileItem实例具有属性:FileItem .fname 允许FileItem实例提供给任何库,使用json.dumps(obj)序列化它 不需要将任何其他字段传递给json。转储(如自定义序列化器)
IE:
fileItem = FileItem('filename.ext')
assert json.dumps(fileItem) == '{"fname": "filename.ext"}'
assert fileItem.fname == 'filename.ext'
我的解决方案是:
obj的类是否继承自dict 将每个对象属性映射到底层字典
class FileItem(dict):
def __init__(self, fname):
self['fname'] = fname
#fname property
fname: str = property()
@fname.getter
def fname(self):
return self['fname']
@fname.setter
def fname(self, value: str):
self['fname'] = value
#Repeat for other properties
是的,如果你有很多属性,这有点冗长,但它是JSONSerializable,它的行为像一个对象,你可以把它给任何库,去json.dumps(obj)它。
其他回答
解决这个问题有很多方法。'ObjDict' (pip install object)是另一个。重点是提供像javascript一样的对象,它也可以像字典一样最好地处理从JSON加载的数据,但还有其他功能也很有用。这为原始问题提供了另一种解决方案。
我们经常在日志文件中转储JSON格式的复杂字典。虽然大多数字段携带重要信息,但我们不太关心内置的类对象(例如子进程)。Popen对象)。由于存在这些不可序列化的对象,对json.dumps()的调用会失败。
为了解决这个问题,我构建了一个小函数来转储对象的字符串表示形式,而不是转储对象本身。如果您正在处理的数据结构嵌套太多,您可以指定嵌套的最大级别/深度。
from time import time
def safe_serialize(obj , max_depth = 2):
max_level = max_depth
def _safe_serialize(obj , current_level = 0):
nonlocal max_level
# If it is a list
if isinstance(obj , list):
if current_level >= max_level:
return "[...]"
result = list()
for element in obj:
result.append(_safe_serialize(element , current_level + 1))
return result
# If it is a dict
elif isinstance(obj , dict):
if current_level >= max_level:
return "{...}"
result = dict()
for key , value in obj.items():
result[f"{_safe_serialize(key , current_level + 1)}"] = _safe_serialize(value , current_level + 1)
return result
# If it is an object of builtin class
elif hasattr(obj , "__dict__"):
if hasattr(obj , "__repr__"):
result = f"{obj.__repr__()}_{int(time())}"
else:
try:
result = f"{obj.__class__.__name__}_object_{int(time())}"
except:
result = f"object_{int(time())}"
return result
# If it is anything else
else:
return obj
return _safe_serialize(obj)
由于字典也可以有不可序列化的键,转储它们的类名或对象表示将导致所有键都具有相同的名称,这将抛出错误,因为所有键都需要有唯一的名称,这就是为什么当前时间Since epoch被int(time())附加到对象名称。
可以使用以下具有不同级别/深度的嵌套字典来测试该函数
d = {
"a" : {
"a1" : {
"a11" : {
"a111" : "some_value" ,
"a112" : "some_value" ,
} ,
"a12" : {
"a121" : "some_value" ,
"a122" : "some_value" ,
} ,
} ,
"a2" : {
"a21" : {
"a211" : "some_value" ,
"a212" : "some_value" ,
} ,
"a22" : {
"a221" : "some_value" ,
"a222" : "some_value" ,
} ,
} ,
} ,
"b" : {
"b1" : {
"b11" : {
"b111" : "some_value" ,
"b112" : "some_value" ,
} ,
"b12" : {
"b121" : "some_value" ,
"b122" : "some_value" ,
} ,
} ,
"b2" : {
"b21" : {
"b211" : "some_value" ,
"b212" : "some_value" ,
} ,
"b22" : {
"b221" : "some_value" ,
"b222" : "some_value" ,
} ,
} ,
} ,
"c" : subprocess.Popen("ls -l".split() , stdout = subprocess.PIPE , stderr = subprocess.PIPE) ,
}
执行以下命令将会得到-
print("LEVEL 3")
print(json.dumps(safe_serialize(d , 3) , indent = 4))
print("\n\n\nLEVEL 2")
print(json.dumps(safe_serialize(d , 2) , indent = 4))
print("\n\n\nLEVEL 1")
print(json.dumps(safe_serialize(d , 1) , indent = 4))
结果:
LEVEL 3
{
"a": {
"a1": {
"a11": "{...}",
"a12": "{...}"
},
"a2": {
"a21": "{...}",
"a22": "{...}"
}
},
"b": {
"b1": {
"b11": "{...}",
"b12": "{...}"
},
"b2": {
"b21": "{...}",
"b22": "{...}"
}
},
"c": "<Popen: returncode: None args: ['ls', '-l']>"
}
LEVEL 2
{
"a": {
"a1": "{...}",
"a2": "{...}"
},
"b": {
"b1": "{...}",
"b2": "{...}"
},
"c": "<Popen: returncode: None args: ['ls', '-l']>"
}
LEVEL 1
{
"a": "{...}",
"b": "{...}",
"c": "<Popen: returncode: None args: ['ls', '-l']>"
}
[注意]:仅在不关心内置类对象的序列化时使用此选项。
下面是一个简单功能的简单解决方案:
.toJSON()方法
实现一个序列化器方法,而不是一个JSON可序列化类:
import json
class Object:
def toJSON(self):
return json.dumps(self, default=lambda o: o.__dict__,
sort_keys=True, indent=4)
所以你只需调用它来序列化:
me = Object()
me.name = "Onur"
me.age = 35
me.dog = Object()
me.dog.name = "Apollo"
print(me.toJSON())
将输出:
{
"age": 35,
"dog": {
"name": "Apollo"
},
"name": "Onur"
}
一个非常简单的一行程序解决方案
import json
json.dumps(your_object, default=lambda __o: __o.__dict__)
结束!
下面是一个测试。
import json
from dataclasses import dataclass
@dataclass
class Company:
id: int
name: str
@dataclass
class User:
id: int
name: str
email: str
company: Company
company = Company(id=1, name="Example Ltd")
user = User(id=1, name="John Doe", email="john@doe.net", company=company)
json.dumps(user, default=lambda __o: __o.__dict__)
输出:
{
"id": 1,
"name": "John Doe",
"email": "john@doe.net",
"company": {
"id": 1,
"name": "Example Ltd"
}
}
我最喜欢Lost Koder的方法。当我试图序列化成员/方法不可序列化的更复杂的对象时,我遇到了问题。这是我的实现,工作在更多的对象:
class Serializer(object):
@staticmethod
def serialize(obj):
def check(o):
for k, v in o.__dict__.items():
try:
_ = json.dumps(v)
o.__dict__[k] = v
except TypeError:
o.__dict__[k] = str(v)
return o
return json.dumps(check(obj).__dict__, indent=2)