如何使一个Python类序列化?

class FileItem:
    def __init__(self, fname):
        self.fname = fname

尝试序列化为JSON:

>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable

当前回答

为了给这场11年的大火再添一根柴,我想要一个满足以下条件的解决方案:

只允许使用json.dumps(obj)序列化类FileItem的实例 允许FileItem实例具有属性:FileItem .fname 允许FileItem实例提供给任何库,使用json.dumps(obj)序列化它 不需要将任何其他字段传递给json。转储(如自定义序列化器)

IE:

fileItem = FileItem('filename.ext')
assert json.dumps(fileItem) == '{"fname": "filename.ext"}'
assert fileItem.fname == 'filename.ext'

我的解决方案是:

obj的类是否继承自dict 将每个对象属性映射到底层字典

class FileItem(dict):
    def __init__(self, fname):
        self['fname'] = fname

    #fname property
    fname: str = property()
    @fname.getter
    def fname(self):
        return self['fname']

    @fname.setter
    def fname(self, value: str):
        self['fname'] = value

    #Repeat for other properties

是的,如果你有很多属性,这有点冗长,但它是JSONSerializable,它的行为像一个对象,你可以把它给任何库,去json.dumps(obj)它。

其他回答

一个非常简单的一行程序解决方案

import json

json.dumps(your_object, default=lambda __o: __o.__dict__)

结束!

下面是一个测试。

import json
from dataclasses import dataclass


@dataclass
class Company:
    id: int
    name: str

@dataclass
class User:
    id: int
    name: str
    email: str
    company: Company


company = Company(id=1, name="Example Ltd")
user = User(id=1, name="John Doe", email="john@doe.net", company=company)


json.dumps(user, default=lambda __o: __o.__dict__)

输出:

{
  "id": 1, 
  "name": "John Doe", 
  "email": "john@doe.net", 
  "company": {
    "id": 1, 
    "name": "Example Ltd"
  }
}

Json在它可以打印的对象方面受到限制,而jsonpickle(你可能需要一个PIP安装jsonpickle)在它不能缩进文本方面受到限制。如果你想检查一个你不能改变类的对象的内容,我仍然找不到比:

 import json
 import jsonpickle
 ...
 print  json.dumps(json.loads(jsonpickle.encode(object)), indent=2)

注意:他们仍然不能打印对象方法。

为了在10年前的火灾中再添加一个日志,我还将为这个任务提供数据类向导,假设您使用的是Python 3.6+。这可以很好地用于数据类,这实际上是3.7+版本的python内置模块。

dataclass-wizard库将把对象(及其所有属性递归地)转换为dict,并使用fromdict使反向(反序列化)非常简单。另外,这里是PyPi链接:https://pypi.org/project/dataclass-wizard/。

import dataclass_wizard
import dataclasses

@dataclasses.dataclass
class A:
    hello: str
    a_field: int

obj = A('world', 123)
a_dict = dataclass_wizard.asdict(obj)
# {'hello': 'world', 'aField': 123}

或者如果你想要一个字符串:

a_str = jsons.dumps(dataclass_wizard.asdict(obj))

或者您的类是否从dataclass_wizard扩展。JSONWizard:

a_str = your_object.to_json()

最后,标准库还支持Union类型的数据类,这基本上意味着可以将dict反序列化为类C1或C2的对象。例如:

from dataclasses import dataclass

from dataclass_wizard import JSONWizard

@dataclass
class Outer(JSONWizard):

    class _(JSONWizard.Meta):
        tag_key = 'tag'
        auto_assign_tags = True

    my_string: str
    inner: 'A | B'  # alternate syntax: `inner: typing.Union['A', 'B']`

@dataclass
class A:
    my_field: int

@dataclass
class B:
    my_field: str


my_dict = {'myString': 'test', 'inner': {'tag': 'B', 'myField': 'test'}}
obj = Outer.from_dict(my_dict)

# True
assert repr(obj) == "Outer(my_string='test', inner=B(my_field='test'))"

obj.to_json()
# {"myString": "test", "inner": {"myField": "test", "tag": "B"}}

你知道预期产量是多少吗?例如,这个可以吗?

>>> f  = FileItem("/foo/bar")
>>> magic(f)
'{"fname": "/foo/bar"}'

在这种情况下,你只需调用json.dumps(f.__dict__)。

如果您想要更多自定义输出,那么您必须继承JSONEncoder并实现您自己的自定义序列化。

对于一个简单的例子,请参见下面。

>>> from json import JSONEncoder
>>> class MyEncoder(JSONEncoder):
        def default(self, o):
            return o.__dict__    

>>> MyEncoder().encode(f)
'{"fname": "/foo/bar"}'

然后你把这个类作为cls kwarg传递给json.dumps()方法:

json.dumps(cls=MyEncoder)

如果还想解码,则必须向JSONDecoder类提供一个自定义object_hook。例如:

>>> def from_json(json_object):
        if 'fname' in json_object:
            return FileItem(json_object['fname'])
>>> f = JSONDecoder(object_hook = from_json).decode('{"fname": "/foo/bar"}')
>>> f
<__main__.FileItem object at 0x9337fac>
>>> 

加拉科给出了一个非常简洁的答案。我需要修复一些小的东西,但这是有效的:

Code

# Your custom class
class MyCustom(object):
    def __json__(self):
        return {
            'a': self.a,
            'b': self.b,
            '__python__': 'mymodule.submodule:MyCustom.from_json',
        }

    to_json = __json__  # supported by simplejson

    @classmethod
    def from_json(cls, json):
        obj = cls()
        obj.a = json['a']
        obj.b = json['b']
        return obj

# Dumping and loading
import simplejson

obj = MyCustom()
obj.a = 3
obj.b = 4

json = simplejson.dumps(obj, for_json=True)

# Two-step loading
obj2_dict = simplejson.loads(json)
obj2 = MyCustom.from_json(obj2_dict)

# Make sure we have the correct thing
assert isinstance(obj2, MyCustom)
assert obj2.__dict__ == obj.__dict__

注意,加载需要两个步骤。现在是__python__属性 未使用。

这种情况有多普遍?

使用AlJohri的方法,我检查了流行的方法:

序列化(Python -> JSON):

To_json: 266,595 on 2018-06-27 toJSON: 96,307 on 2018-06-27 __json__: 8504 on 2018-06-27 For_json: 6937 on 2018-06-27

反序列化(JSON -> Python):

From_json: 226,101 on 2018-06-27