如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
当前回答
对于更复杂的类,您可以考虑使用jsonpickle工具:
jsonpickle is a Python library for serialization and deserialization of complex Python objects to and from JSON. The standard Python libraries for encoding Python into JSON, such as the stdlib’s json, simplejson, and demjson, can only handle Python primitives that have a direct JSON equivalent (e.g. dicts, lists, strings, ints, etc.). jsonpickle builds on top of these libraries and allows more complex data structures to be serialized to JSON. jsonpickle is highly configurable and extendable–allowing the user to choose the JSON backend and add additional backends.
(链接到PyPi上的jsonpickle)
其他回答
基于Quinten Cabo的回答:
def sterilize(obj):
"""Make an object more ameniable to dumping as json
"""
if type(obj) in (str, float, int, bool, type(None)):
return obj
elif isinstance(obj, dict):
return {k: sterilize(v) for k, v in obj.items()}
list_ret = []
dict_ret = {}
for a in dir(obj):
if a == '__iter__' and callable(obj.__iter__):
list_ret.extend([sterilize(v) for v in obj])
elif a == '__dict__':
dict_ret.update({k: sterilize(v) for k, v in obj.__dict__.items() if k not in ['__module__', '__dict__', '__weakref__', '__doc__']})
elif a not in ['__doc__', '__module__']:
aval = getattr(obj, a)
if type(aval) in (str, float, int, bool, type(None)):
dict_ret[a] = aval
elif a != '__class__' and a != '__objclass__' and isinstance(aval, type):
dict_ret[a] = sterilize(aval)
if len(list_ret) == 0:
if len(dict_ret) == 0:
return repr(obj)
return dict_ret
else:
if len(dict_ret) == 0:
return list_ret
return (list_ret, dict_ret)
区别在于
Works for any iterable instead of just list and tuple (it works for NumPy arrays, etc.) Works for dynamic types (ones that contain a __dict__). Includes native types float and None so they don't get converted to string. Classes that have __dict__ and members will mostly work (if the __dict__ and member names collide, you will only get one - likely the member) Classes that are lists and have members will look like a tuple of the list and a dictionary Python3 (that isinstance() call may be the only thing that needs changing)
另一种选择是将JSON转储打包到它自己的类中:
import json
class FileItem:
def __init__(self, fname):
self.fname = fname
def __repr__(self):
return json.dumps(self.__dict__)
或者,更好的是,从JsonSerializable类继承FileItem类:
import json
class JsonSerializable(object):
def toJson(self):
return json.dumps(self.__dict__)
def __repr__(self):
return self.toJson()
class FileItem(JsonSerializable):
def __init__(self, fname):
self.fname = fname
测试:
>>> f = FileItem('/foo/bar')
>>> f.toJson()
'{"fname": "/foo/bar"}'
>>> f
'{"fname": "/foo/bar"}'
>>> str(f) # string coercion
'{"fname": "/foo/bar"}'
如果你能够安装一个软件包,我建议你试试dill,它在我的项目中工作得很好。这个包的一个优点是它具有与pickle相同的接口,因此如果您已经在项目中使用了pickle,则可以简单地替换为dill并查看脚本是否运行,而无需更改任何代码。所以这是一个非常便宜的解决方案!
(完全反披露:我与莳萝项目没有任何关联,也从未参与过。)
安装包:
pip install dill
然后编辑你的代码导入莳萝而不是pickle:
# import pickle
import dill as pickle
运行脚本,看看它是否有效。(如果是的话,你可能想要清理你的代码,这样你就不再隐藏pickle模块的名字了!)
关于dill可以和不能序列化的数据类型的一些细节,来自项目页面:
dill can pickle the following standard types: none, type, bool, int, long, float, complex, str, unicode, tuple, list, dict, file, buffer, builtin, both old and new style classes, instances of old and new style classes, set, frozenset, array, functions, exceptions dill can also pickle more ‘exotic’ standard types: functions with yields, nested functions, lambdas, cell, method, unboundmethod, module, code, methodwrapper, dictproxy, methoddescriptor, getsetdescriptor, memberdescriptor, wrapperdescriptor, xrange, slice, notimplemented, ellipsis, quit dill cannot yet pickle these standard types: frame, generator, traceback
我喜欢Onur的答案,但会扩展到包括一个可选的toJSON()方法,用于对象序列化自己:
def dumper(obj):
try:
return obj.toJSON()
except:
return obj.__dict__
print json.dumps(some_big_object, default=dumper, indent=2)
我们经常在日志文件中转储JSON格式的复杂字典。虽然大多数字段携带重要信息,但我们不太关心内置的类对象(例如子进程)。Popen对象)。由于存在这些不可序列化的对象,对json.dumps()的调用会失败。
为了解决这个问题,我构建了一个小函数来转储对象的字符串表示形式,而不是转储对象本身。如果您正在处理的数据结构嵌套太多,您可以指定嵌套的最大级别/深度。
from time import time
def safe_serialize(obj , max_depth = 2):
max_level = max_depth
def _safe_serialize(obj , current_level = 0):
nonlocal max_level
# If it is a list
if isinstance(obj , list):
if current_level >= max_level:
return "[...]"
result = list()
for element in obj:
result.append(_safe_serialize(element , current_level + 1))
return result
# If it is a dict
elif isinstance(obj , dict):
if current_level >= max_level:
return "{...}"
result = dict()
for key , value in obj.items():
result[f"{_safe_serialize(key , current_level + 1)}"] = _safe_serialize(value , current_level + 1)
return result
# If it is an object of builtin class
elif hasattr(obj , "__dict__"):
if hasattr(obj , "__repr__"):
result = f"{obj.__repr__()}_{int(time())}"
else:
try:
result = f"{obj.__class__.__name__}_object_{int(time())}"
except:
result = f"object_{int(time())}"
return result
# If it is anything else
else:
return obj
return _safe_serialize(obj)
由于字典也可以有不可序列化的键,转储它们的类名或对象表示将导致所有键都具有相同的名称,这将抛出错误,因为所有键都需要有唯一的名称,这就是为什么当前时间Since epoch被int(time())附加到对象名称。
可以使用以下具有不同级别/深度的嵌套字典来测试该函数
d = {
"a" : {
"a1" : {
"a11" : {
"a111" : "some_value" ,
"a112" : "some_value" ,
} ,
"a12" : {
"a121" : "some_value" ,
"a122" : "some_value" ,
} ,
} ,
"a2" : {
"a21" : {
"a211" : "some_value" ,
"a212" : "some_value" ,
} ,
"a22" : {
"a221" : "some_value" ,
"a222" : "some_value" ,
} ,
} ,
} ,
"b" : {
"b1" : {
"b11" : {
"b111" : "some_value" ,
"b112" : "some_value" ,
} ,
"b12" : {
"b121" : "some_value" ,
"b122" : "some_value" ,
} ,
} ,
"b2" : {
"b21" : {
"b211" : "some_value" ,
"b212" : "some_value" ,
} ,
"b22" : {
"b221" : "some_value" ,
"b222" : "some_value" ,
} ,
} ,
} ,
"c" : subprocess.Popen("ls -l".split() , stdout = subprocess.PIPE , stderr = subprocess.PIPE) ,
}
执行以下命令将会得到-
print("LEVEL 3")
print(json.dumps(safe_serialize(d , 3) , indent = 4))
print("\n\n\nLEVEL 2")
print(json.dumps(safe_serialize(d , 2) , indent = 4))
print("\n\n\nLEVEL 1")
print(json.dumps(safe_serialize(d , 1) , indent = 4))
结果:
LEVEL 3
{
"a": {
"a1": {
"a11": "{...}",
"a12": "{...}"
},
"a2": {
"a21": "{...}",
"a22": "{...}"
}
},
"b": {
"b1": {
"b11": "{...}",
"b12": "{...}"
},
"b2": {
"b21": "{...}",
"b22": "{...}"
}
},
"c": "<Popen: returncode: None args: ['ls', '-l']>"
}
LEVEL 2
{
"a": {
"a1": "{...}",
"a2": "{...}"
},
"b": {
"b1": "{...}",
"b2": "{...}"
},
"c": "<Popen: returncode: None args: ['ls', '-l']>"
}
LEVEL 1
{
"a": "{...}",
"b": "{...}",
"c": "<Popen: returncode: None args: ['ls', '-l']>"
}
[注意]:仅在不关心内置类对象的序列化时使用此选项。