如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
当前回答
这是我的3美分… 这演示了一个树状python对象的显式json序列化。 注意:如果你真的想要这样的代码,你可以使用twisted FilePath类。
import json, sys, os
class File:
def __init__(self, path):
self.path = path
def isdir(self):
return os.path.isdir(self.path)
def isfile(self):
return os.path.isfile(self.path)
def children(self):
return [File(os.path.join(self.path, f))
for f in os.listdir(self.path)]
def getsize(self):
return os.path.getsize(self.path)
def getModificationTime(self):
return os.path.getmtime(self.path)
def _default(o):
d = {}
d['path'] = o.path
d['isFile'] = o.isfile()
d['isDir'] = o.isdir()
d['mtime'] = int(o.getModificationTime())
d['size'] = o.getsize() if o.isfile() else 0
if o.isdir(): d['children'] = o.children()
return d
folder = os.path.abspath('.')
json.dump(File(folder), sys.stdout, default=_default)
其他回答
如果你能够安装一个软件包,我建议你试试dill,它在我的项目中工作得很好。这个包的一个优点是它具有与pickle相同的接口,因此如果您已经在项目中使用了pickle,则可以简单地替换为dill并查看脚本是否运行,而无需更改任何代码。所以这是一个非常便宜的解决方案!
(完全反披露:我与莳萝项目没有任何关联,也从未参与过。)
安装包:
pip install dill
然后编辑你的代码导入莳萝而不是pickle:
# import pickle
import dill as pickle
运行脚本,看看它是否有效。(如果是的话,你可能想要清理你的代码,这样你就不再隐藏pickle模块的名字了!)
关于dill可以和不能序列化的数据类型的一些细节,来自项目页面:
dill can pickle the following standard types: none, type, bool, int, long, float, complex, str, unicode, tuple, list, dict, file, buffer, builtin, both old and new style classes, instances of old and new style classes, set, frozenset, array, functions, exceptions dill can also pickle more ‘exotic’ standard types: functions with yields, nested functions, lambdas, cell, method, unboundmethod, module, code, methodwrapper, dictproxy, methoddescriptor, getsetdescriptor, memberdescriptor, wrapperdescriptor, xrange, slice, notimplemented, ellipsis, quit dill cannot yet pickle these standard types: frame, generator, traceback
这是我的3美分… 这演示了一个树状python对象的显式json序列化。 注意:如果你真的想要这样的代码,你可以使用twisted FilePath类。
import json, sys, os
class File:
def __init__(self, path):
self.path = path
def isdir(self):
return os.path.isdir(self.path)
def isfile(self):
return os.path.isfile(self.path)
def children(self):
return [File(os.path.join(self.path, f))
for f in os.listdir(self.path)]
def getsize(self):
return os.path.getsize(self.path)
def getModificationTime(self):
return os.path.getmtime(self.path)
def _default(o):
d = {}
d['path'] = o.path
d['isFile'] = o.isfile()
d['isDir'] = o.isdir()
d['mtime'] = int(o.getModificationTime())
d['size'] = o.getsize() if o.isfile() else 0
if o.isdir(): d['children'] = o.children()
return d
folder = os.path.abspath('.')
json.dump(File(folder), sys.stdout, default=_default)
TLDR:复制-粘贴下面的选项1或选项2
真正的/完整的答案:让Pythons json模块与你的类一起工作
AKA,求解:json。dump ({"thing": YOUR_CLASS()})
解释:
Yes, a good reliable solution exists No, there is no python "official" solution By official solution, I mean there is no way (as of 2023) to add a method to your class (like toJSON in JavaScript) and/or no way to register your class with the built-in json module. When something like json.dumps([1,2, your_obj]) is executed, python doesn't check a lookup table or object method. I'm not sure why other answers don't explain this The closest official approach is probably andyhasit's answer which is to inherit from a dictionary. However, inheriting from a dictionary doesn't work very well for many custom classes like AdvancedDateTime, or pytorch tensors. The ideal workaround is this: Mutate json.dumps (affects everywhere, even pip modules that import json) Add def __json__(self) method to your class
选项1:让一个模块来做补丁
PIP安装json-fix (扩展+包装版FancyJohn的回答,谢谢@FancyJohn)
your_class_definition.py
import json_fix
class YOUR_CLASS:
def __json__(self):
# YOUR CUSTOM CODE HERE
# you probably just want to do:
# return self.__dict__
return "a built-in object that is naturally json-able"
这是它。
使用示例:
from your_class_definition import YOUR_CLASS
import json
json.dumps([1,2, YOUR_CLASS()], indent=0)
# '[\n1,\n2,\n"a built-in object that is naturally json-able"\n]'
生成json。dump适用于Numpy数组,Pandas DataFrames和其他第三方对象,请参阅模块(只有大约2行代码,但需要解释)。
它是如何工作的?嗯…
选项2:补丁json。把你自己
注意:这种方法是简化的,它在已知的edgcase上失败(例如:如果你的自定义类继承了dict或其他内置类),并且它错过了控制外部类的json行为(numpy数组,datetime, dataframes,张量等)。
some_file_thats_imported_before_your_class_definitions.py
# Step: 1
# create the patch
from json import JSONEncoder
def wrapped_default(self, obj):
return getattr(obj.__class__, "__json__", wrapped_default.default)(obj)
wrapped_default.default = JSONEncoder().default
# apply the patch
JSONEncoder.original_default = JSONEncoder.default
JSONEncoder.default = wrapped_default
your_class_definition.py
# Step 2
class YOUR_CLASS:
def __json__(self, **options):
# YOUR CUSTOM CODE HERE
# you probably just want to do:
# return self.__dict__
return "a built-in object that is natually json-able"
_
其他答案似乎都是“序列化自定义对象的最佳实践/方法”
在这里的文档中已经介绍过了(搜索“complex”可以找到编码复数的例子)
import json
class Foo(object):
def __init__(self):
self.bar = 'baz'
self._qux = 'flub'
def somemethod(self):
pass
def default(instance):
return {k: v
for k, v in vars(instance).items()
if not str(k).startswith('_')}
json_foo = json.dumps(Foo(), default=default)
assert '{"bar": "baz"}' == json_foo
print(json_foo)
如果你不介意为它安装一个包,你可以使用json-tricks:
pip install json-tricks
之后,你只需要从json_tricks导入dump(s)而不是json,它通常会工作:
from json_tricks import dumps
json_str = dumps(cls_instance, indent=4)
这将给
{
"__instance_type__": [
"module_name.test_class",
"MyTestCls"
],
"attributes": {
"attr": "val",
"dct_attr": {
"hello": 42
}
}
}
基本上就是这样!
这在一般情况下会很有效。有一些例外,例如,如果特殊的事情发生在__new__中,或者更多的元类魔法正在发生。
显然加载也可以(否则有什么意义):
from json_tricks import loads
json_str = loads(json_str)
这确实假设module_name.test_class。MyTestCls可以导入,并且没有以不兼容的方式进行更改。您将返回一个实例,而不是某个字典或其他东西,它应该是您转储的实例的相同副本。
如果你想自定义一些东西是如何(反)序列化的,你可以添加特殊的方法到你的类,像这样:
class CustomEncodeCls:
def __init__(self):
self.relevant = 42
self.irrelevant = 37
def __json_encode__(self):
# should return primitive, serializable types like dict, list, int, string, float...
return {'relevant': self.relevant}
def __json_decode__(self, **attrs):
# should initialize all properties; note that __init__ is not called implicitly
self.relevant = attrs['relevant']
self.irrelevant = 12
其中仅序列化部分属性参数,作为示例。
作为免费的奖励,你可以获得numpy数组、日期和时间、有序地图的(反)序列化,以及在json中包含注释的能力。
免责声明:我创建了json_tricks,因为我遇到了与您相同的问题。