如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
当前回答
import simplejson
class User(object):
def __init__(self, name, mail):
self.name = name
self.mail = mail
def _asdict(self):
return self.__dict__
print(simplejson.dumps(User('alice', 'alice@mail.com')))
如果使用标准json,则需要定义一个默认函数
import json
def default(o):
return o._asdict()
print(json.dumps(User('alice', 'alice@mail.com'), default=default))
其他回答
我们经常在日志文件中转储JSON格式的复杂字典。虽然大多数字段携带重要信息,但我们不太关心内置的类对象(例如子进程)。Popen对象)。由于存在这些不可序列化的对象,对json.dumps()的调用会失败。
为了解决这个问题,我构建了一个小函数来转储对象的字符串表示形式,而不是转储对象本身。如果您正在处理的数据结构嵌套太多,您可以指定嵌套的最大级别/深度。
from time import time
def safe_serialize(obj , max_depth = 2):
max_level = max_depth
def _safe_serialize(obj , current_level = 0):
nonlocal max_level
# If it is a list
if isinstance(obj , list):
if current_level >= max_level:
return "[...]"
result = list()
for element in obj:
result.append(_safe_serialize(element , current_level + 1))
return result
# If it is a dict
elif isinstance(obj , dict):
if current_level >= max_level:
return "{...}"
result = dict()
for key , value in obj.items():
result[f"{_safe_serialize(key , current_level + 1)}"] = _safe_serialize(value , current_level + 1)
return result
# If it is an object of builtin class
elif hasattr(obj , "__dict__"):
if hasattr(obj , "__repr__"):
result = f"{obj.__repr__()}_{int(time())}"
else:
try:
result = f"{obj.__class__.__name__}_object_{int(time())}"
except:
result = f"object_{int(time())}"
return result
# If it is anything else
else:
return obj
return _safe_serialize(obj)
由于字典也可以有不可序列化的键,转储它们的类名或对象表示将导致所有键都具有相同的名称,这将抛出错误,因为所有键都需要有唯一的名称,这就是为什么当前时间Since epoch被int(time())附加到对象名称。
可以使用以下具有不同级别/深度的嵌套字典来测试该函数
d = {
"a" : {
"a1" : {
"a11" : {
"a111" : "some_value" ,
"a112" : "some_value" ,
} ,
"a12" : {
"a121" : "some_value" ,
"a122" : "some_value" ,
} ,
} ,
"a2" : {
"a21" : {
"a211" : "some_value" ,
"a212" : "some_value" ,
} ,
"a22" : {
"a221" : "some_value" ,
"a222" : "some_value" ,
} ,
} ,
} ,
"b" : {
"b1" : {
"b11" : {
"b111" : "some_value" ,
"b112" : "some_value" ,
} ,
"b12" : {
"b121" : "some_value" ,
"b122" : "some_value" ,
} ,
} ,
"b2" : {
"b21" : {
"b211" : "some_value" ,
"b212" : "some_value" ,
} ,
"b22" : {
"b221" : "some_value" ,
"b222" : "some_value" ,
} ,
} ,
} ,
"c" : subprocess.Popen("ls -l".split() , stdout = subprocess.PIPE , stderr = subprocess.PIPE) ,
}
执行以下命令将会得到-
print("LEVEL 3")
print(json.dumps(safe_serialize(d , 3) , indent = 4))
print("\n\n\nLEVEL 2")
print(json.dumps(safe_serialize(d , 2) , indent = 4))
print("\n\n\nLEVEL 1")
print(json.dumps(safe_serialize(d , 1) , indent = 4))
结果:
LEVEL 3
{
"a": {
"a1": {
"a11": "{...}",
"a12": "{...}"
},
"a2": {
"a21": "{...}",
"a22": "{...}"
}
},
"b": {
"b1": {
"b11": "{...}",
"b12": "{...}"
},
"b2": {
"b21": "{...}",
"b22": "{...}"
}
},
"c": "<Popen: returncode: None args: ['ls', '-l']>"
}
LEVEL 2
{
"a": {
"a1": "{...}",
"a2": "{...}"
},
"b": {
"b1": "{...}",
"b2": "{...}"
},
"c": "<Popen: returncode: None args: ['ls', '-l']>"
}
LEVEL 1
{
"a": "{...}",
"b": "{...}",
"c": "<Popen: returncode: None args: ['ls', '-l']>"
}
[注意]:仅在不关心内置类对象的序列化时使用此选项。
这是我的3美分… 这演示了一个树状python对象的显式json序列化。 注意:如果你真的想要这样的代码,你可以使用twisted FilePath类。
import json, sys, os
class File:
def __init__(self, path):
self.path = path
def isdir(self):
return os.path.isdir(self.path)
def isfile(self):
return os.path.isfile(self.path)
def children(self):
return [File(os.path.join(self.path, f))
for f in os.listdir(self.path)]
def getsize(self):
return os.path.getsize(self.path)
def getModificationTime(self):
return os.path.getmtime(self.path)
def _default(o):
d = {}
d['path'] = o.path
d['isFile'] = o.isfile()
d['isDir'] = o.isdir()
d['mtime'] = int(o.getModificationTime())
d['size'] = o.getsize() if o.isfile() else 0
if o.isdir(): d['children'] = o.children()
return d
folder = os.path.abspath('.')
json.dump(File(folder), sys.stdout, default=_default)
这个函数使用递归迭代遍历字典的每个部分,然后调用非内置类型类的repr()方法。
def sterilize(obj):
object_type = type(obj)
if isinstance(obj, dict):
return {k: sterilize(v) for k, v in obj.items()}
elif object_type in (list, tuple):
return [sterilize(v) for v in obj]
elif object_type in (str, int, bool, float):
return obj
else:
return obj.__repr__()
大多数答案都涉及更改对json.dumps()的调用,这并不总是可能的或可取的(例如,它可能发生在框架组件内部)。
如果你希望能够按原样调用json.dumps(obj),那么一个简单的解决方案是从dict继承:
class FileItem(dict):
def __init__(self, fname):
dict.__init__(self, fname=fname)
f = FileItem('tasks.txt')
json.dumps(f) #No need to change anything here
如果你的类只是基本的数据表示,这是可行的,对于更棘手的事情,你总是可以显式地设置键。
当我试图将Peewee的模型存储到PostgreSQL JSONField时,我遇到了这个问题。
在苦苦挣扎了一段时间后,这是通解。
我的解决方案的关键是浏览Python的源代码,并意识到代码文档(这里描述的)已经解释了如何扩展现有的json。转储以支持其他数据类型。
假设你现在有一个模型,其中包含一些不能序列化为JSON的字段,并且包含JSON字段的模型最初看起来是这样的:
class SomeClass(Model):
json_field = JSONField()
只需要像这样定义一个自定义JSONEncoder:
class CustomJsonEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, SomeTypeUnsupportedByJsonDumps):
return < whatever value you want >
return json.JSONEncoder.default(self, obj)
@staticmethod
def json_dumper(obj):
return json.dumps(obj, cls=CustomJsonEncoder)
然后像下面这样在你的JSONField中使用它:
class SomeClass(Model):
json_field = JSONField(dumps=CustomJsonEncoder.json_dumper)
键是上面的默认(self, obj)方法。对于每一个……你从Python收到的不是JSON序列化的投诉,只需添加代码来处理不可序列化的JSON类型(如Enum或datetime)
例如,下面是我如何支持从Enum继承的类:
class TransactionType(Enum):
CURRENT = 1
STACKED = 2
def default(self, obj):
if isinstance(obj, TransactionType):
return obj.value
return json.JSONEncoder.default(self, obj)
最后,使用上面实现的代码,您可以将任何Peewee模型转换为如下所示的json可序列化对象:
peewee_model = WhateverPeeweeModel()
new_model = SomeClass()
new_model.json_field = model_to_dict(peewee_model)
虽然上面的代码(在某种程度上)是针对Peewee的,但我认为:
它一般适用于其他orm (Django等) 如果你理解json。dump可以工作,这个解决方案一般也适用于Python(无ORM)
有任何问题,请在评论区留言。谢谢!