如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
当前回答
正如在许多其他答案中提到的,您可以将函数传递给json。转储将不是默认支持的类型之一的对象转换为受支持的类型。令人惊讶的是,他们都没有提到最简单的情况,即使用内置函数vars将对象转换为包含其所有属性的dict:
json.dumps(obj, default=vars)
注意,这只涵盖了基本的情况,如果你需要对某些类型进行更具体的序列化(例如排除某些属性或没有__dict__属性的对象),你需要使用自定义函数或JSONEncoder,如其他答案中所述。
其他回答
基于Quinten Cabo的回答:
def sterilize(obj):
"""Make an object more ameniable to dumping as json
"""
if type(obj) in (str, float, int, bool, type(None)):
return obj
elif isinstance(obj, dict):
return {k: sterilize(v) for k, v in obj.items()}
list_ret = []
dict_ret = {}
for a in dir(obj):
if a == '__iter__' and callable(obj.__iter__):
list_ret.extend([sterilize(v) for v in obj])
elif a == '__dict__':
dict_ret.update({k: sterilize(v) for k, v in obj.__dict__.items() if k not in ['__module__', '__dict__', '__weakref__', '__doc__']})
elif a not in ['__doc__', '__module__']:
aval = getattr(obj, a)
if type(aval) in (str, float, int, bool, type(None)):
dict_ret[a] = aval
elif a != '__class__' and a != '__objclass__' and isinstance(aval, type):
dict_ret[a] = sterilize(aval)
if len(list_ret) == 0:
if len(dict_ret) == 0:
return repr(obj)
return dict_ret
else:
if len(dict_ret) == 0:
return list_ret
return (list_ret, dict_ret)
区别在于
Works for any iterable instead of just list and tuple (it works for NumPy arrays, etc.) Works for dynamic types (ones that contain a __dict__). Includes native types float and None so they don't get converted to string. Classes that have __dict__ and members will mostly work (if the __dict__ and member names collide, you will only get one - likely the member) Classes that are lists and have members will look like a tuple of the list and a dictionary Python3 (that isinstance() call may be the only thing that needs changing)
一个非常简单的一行程序解决方案
import json
json.dumps(your_object, default=lambda __o: __o.__dict__)
结束!
下面是一个测试。
import json
from dataclasses import dataclass
@dataclass
class Company:
id: int
name: str
@dataclass
class User:
id: int
name: str
email: str
company: Company
company = Company(id=1, name="Example Ltd")
user = User(id=1, name="John Doe", email="john@doe.net", company=company)
json.dumps(user, default=lambda __o: __o.__dict__)
输出:
{
"id": 1,
"name": "John Doe",
"email": "john@doe.net",
"company": {
"id": 1,
"name": "Example Ltd"
}
}
如果你能够安装一个软件包,我建议你试试dill,它在我的项目中工作得很好。这个包的一个优点是它具有与pickle相同的接口,因此如果您已经在项目中使用了pickle,则可以简单地替换为dill并查看脚本是否运行,而无需更改任何代码。所以这是一个非常便宜的解决方案!
(完全反披露:我与莳萝项目没有任何关联,也从未参与过。)
安装包:
pip install dill
然后编辑你的代码导入莳萝而不是pickle:
# import pickle
import dill as pickle
运行脚本,看看它是否有效。(如果是的话,你可能想要清理你的代码,这样你就不再隐藏pickle模块的名字了!)
关于dill可以和不能序列化的数据类型的一些细节,来自项目页面:
dill can pickle the following standard types: none, type, bool, int, long, float, complex, str, unicode, tuple, list, dict, file, buffer, builtin, both old and new style classes, instances of old and new style classes, set, frozenset, array, functions, exceptions dill can also pickle more ‘exotic’ standard types: functions with yields, nested functions, lambdas, cell, method, unboundmethod, module, code, methodwrapper, dictproxy, methoddescriptor, getsetdescriptor, memberdescriptor, wrapperdescriptor, xrange, slice, notimplemented, ellipsis, quit dill cannot yet pickle these standard types: frame, generator, traceback
我有了自己的解决办法。使用此方法,将任何文档(字典、列表、ObjectId等)传递给序列化。
def getSerializable(doc):
# check if it's a list
if isinstance(doc, list):
for i, val in enumerate(doc):
doc[i] = getSerializable(doc[i])
return doc
# check if it's a dict
if isinstance(doc, dict):
for key in doc.keys():
doc[key] = getSerializable(doc[key])
return doc
# Process ObjectId
if isinstance(doc, ObjectId):
doc = str(doc)
return doc
# Use any other custom serializting stuff here...
# For the rest of stuff
return doc
下面是一个简单功能的简单解决方案:
.toJSON()方法
实现一个序列化器方法,而不是一个JSON可序列化类:
import json
class Object:
def toJSON(self):
return json.dumps(self, default=lambda o: o.__dict__,
sort_keys=True, indent=4)
所以你只需调用它来序列化:
me = Object()
me.name = "Onur"
me.age = 35
me.dog = Object()
me.dog.name = "Apollo"
print(me.toJSON())
将输出:
{
"age": 35,
"dog": {
"name": "Apollo"
},
"name": "Onur"
}