如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
当前回答
当我试图将Peewee的模型存储到PostgreSQL JSONField时,我遇到了这个问题。
在苦苦挣扎了一段时间后,这是通解。
我的解决方案的关键是浏览Python的源代码,并意识到代码文档(这里描述的)已经解释了如何扩展现有的json。转储以支持其他数据类型。
假设你现在有一个模型,其中包含一些不能序列化为JSON的字段,并且包含JSON字段的模型最初看起来是这样的:
class SomeClass(Model):
json_field = JSONField()
只需要像这样定义一个自定义JSONEncoder:
class CustomJsonEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, SomeTypeUnsupportedByJsonDumps):
return < whatever value you want >
return json.JSONEncoder.default(self, obj)
@staticmethod
def json_dumper(obj):
return json.dumps(obj, cls=CustomJsonEncoder)
然后像下面这样在你的JSONField中使用它:
class SomeClass(Model):
json_field = JSONField(dumps=CustomJsonEncoder.json_dumper)
键是上面的默认(self, obj)方法。对于每一个……你从Python收到的不是JSON序列化的投诉,只需添加代码来处理不可序列化的JSON类型(如Enum或datetime)
例如,下面是我如何支持从Enum继承的类:
class TransactionType(Enum):
CURRENT = 1
STACKED = 2
def default(self, obj):
if isinstance(obj, TransactionType):
return obj.value
return json.JSONEncoder.default(self, obj)
最后,使用上面实现的代码,您可以将任何Peewee模型转换为如下所示的json可序列化对象:
peewee_model = WhateverPeeweeModel()
new_model = SomeClass()
new_model.json_field = model_to_dict(peewee_model)
虽然上面的代码(在某种程度上)是针对Peewee的,但我认为:
它一般适用于其他orm (Django等) 如果你理解json。dump可以工作,这个解决方案一般也适用于Python(无ORM)
有任何问题,请在评论区留言。谢谢!
其他回答
加拉科给出了一个非常简洁的答案。我需要修复一些小的东西,但这是有效的:
Code
# Your custom class
class MyCustom(object):
def __json__(self):
return {
'a': self.a,
'b': self.b,
'__python__': 'mymodule.submodule:MyCustom.from_json',
}
to_json = __json__ # supported by simplejson
@classmethod
def from_json(cls, json):
obj = cls()
obj.a = json['a']
obj.b = json['b']
return obj
# Dumping and loading
import simplejson
obj = MyCustom()
obj.a = 3
obj.b = 4
json = simplejson.dumps(obj, for_json=True)
# Two-step loading
obj2_dict = simplejson.loads(json)
obj2 = MyCustom.from_json(obj2_dict)
# Make sure we have the correct thing
assert isinstance(obj2, MyCustom)
assert obj2.__dict__ == obj.__dict__
注意,加载需要两个步骤。现在是__python__属性 未使用。
这种情况有多普遍?
使用AlJohri的方法,我检查了流行的方法:
序列化(Python -> JSON):
To_json: 266,595 on 2018-06-27 toJSON: 96,307 on 2018-06-27 __json__: 8504 on 2018-06-27 For_json: 6937 on 2018-06-27
反序列化(JSON -> Python):
From_json: 226,101 on 2018-06-27
你们为什么要把事情搞得这么复杂?这里有一个简单的例子:
#!/usr/bin/env python3
import json
from dataclasses import dataclass
@dataclass
class Person:
first: str
last: str
age: int
@property
def __json__(self):
return {
"name": f"{self.first} {self.last}",
"age": self.age
}
john = Person("John", "Doe", 42)
print(json.dumps(john, indent=4, default=lambda x: x.__json__))
这样你也可以序列化嵌套类,因为__json__返回一个python对象而不是字符串。不需要使用JSONEncoder,因为使用简单lambda的默认参数也可以很好地工作。
我使用@property代替了一个简单的函数,因为这样感觉更自然和现代。@dataclass也只是一个例子,它也适用于“普通”类。
如果你能够安装一个软件包,我建议你试试dill,它在我的项目中工作得很好。这个包的一个优点是它具有与pickle相同的接口,因此如果您已经在项目中使用了pickle,则可以简单地替换为dill并查看脚本是否运行,而无需更改任何代码。所以这是一个非常便宜的解决方案!
(完全反披露:我与莳萝项目没有任何关联,也从未参与过。)
安装包:
pip install dill
然后编辑你的代码导入莳萝而不是pickle:
# import pickle
import dill as pickle
运行脚本,看看它是否有效。(如果是的话,你可能想要清理你的代码,这样你就不再隐藏pickle模块的名字了!)
关于dill可以和不能序列化的数据类型的一些细节,来自项目页面:
dill can pickle the following standard types: none, type, bool, int, long, float, complex, str, unicode, tuple, list, dict, file, buffer, builtin, both old and new style classes, instances of old and new style classes, set, frozenset, array, functions, exceptions dill can also pickle more ‘exotic’ standard types: functions with yields, nested functions, lambdas, cell, method, unboundmethod, module, code, methodwrapper, dictproxy, methoddescriptor, getsetdescriptor, memberdescriptor, wrapperdescriptor, xrange, slice, notimplemented, ellipsis, quit dill cannot yet pickle these standard types: frame, generator, traceback
Json在它可以打印的对象方面受到限制,而jsonpickle(你可能需要一个PIP安装jsonpickle)在它不能缩进文本方面受到限制。如果你想检查一个你不能改变类的对象的内容,我仍然找不到比:
import json
import jsonpickle
...
print json.dumps(json.loads(jsonpickle.encode(object)), indent=2)
注意:他们仍然不能打印对象方法。
除了Onur的答案,你可能想要处理如下的datetime类型。(以便处理:'datetime. time.)Datetime对象没有属性dict异常。)
def datetime_option(value):
if isinstance(value, datetime.date):
return value.timestamp()
else:
return value.__dict__
用法:
def toJSON(self):
return json.dumps(self, default=datetime_option, sort_keys=True, indent=4)