如何使一个Python类序列化?

class FileItem:
    def __init__(self, fname):
        self.fname = fname

尝试序列化为JSON:

>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable

当前回答

任何人都想在没有外部库的情况下使用基本转换,这只是如何使用以下方式覆盖自定义类的__iter__ & __str__函数。

class JSONCustomEncoder(json.JSONEncoder):
    def default(self, obj):
        return obj.__dict__


class Student:
    def __init__(self, name: str, slug: str):
        self.name = name
        self.age = age

    def __iter__(self):
        yield from {
            "name": self.name,
            "age": self.age,
        }.items()

    def __str__(self):
        return json.dumps(
            self.__dict__, cls=JSONCustomEncoder, ensure_ascii=False
        )

通过在dict()中进行包装来使用该对象,从而保留数据。

s = Student("aman", 24)
dict(s)

其他回答

如果你能够安装一个软件包,我建议你试试dill,它在我的项目中工作得很好。这个包的一个优点是它具有与pickle相同的接口,因此如果您已经在项目中使用了pickle,则可以简单地替换为dill并查看脚本是否运行,而无需更改任何代码。所以这是一个非常便宜的解决方案!

(完全反披露:我与莳萝项目没有任何关联,也从未参与过。)

安装包:

pip install dill

然后编辑你的代码导入莳萝而不是pickle:

# import pickle
import dill as pickle

运行脚本,看看它是否有效。(如果是的话,你可能想要清理你的代码,这样你就不再隐藏pickle模块的名字了!)

关于dill可以和不能序列化的数据类型的一些细节,来自项目页面:

dill can pickle the following standard types: none, type, bool, int, long, float, complex, str, unicode, tuple, list, dict, file, buffer, builtin, both old and new style classes, instances of old and new style classes, set, frozenset, array, functions, exceptions dill can also pickle more ‘exotic’ standard types: functions with yields, nested functions, lambdas, cell, method, unboundmethod, module, code, methodwrapper, dictproxy, methoddescriptor, getsetdescriptor, memberdescriptor, wrapperdescriptor, xrange, slice, notimplemented, ellipsis, quit dill cannot yet pickle these standard types: frame, generator, traceback

你们为什么要把事情搞得这么复杂?这里有一个简单的例子:

#!/usr/bin/env python3

import json
from dataclasses import dataclass

@dataclass
class Person:
    first: str
    last: str
    age: int

    @property
    def __json__(self):
        return {
            "name": f"{self.first} {self.last}",
            "age": self.age
        }

john = Person("John", "Doe", 42)
print(json.dumps(john, indent=4, default=lambda x: x.__json__))

这样你也可以序列化嵌套类,因为__json__返回一个python对象而不是字符串。不需要使用JSONEncoder,因为使用简单lambda的默认参数也可以很好地工作。

我使用@property代替了一个简单的函数,因为这样感觉更自然和现代。@dataclass也只是一个例子,它也适用于“普通”类。

这是一个小库,它将一个对象及其所有子对象序列化为JSON,并将其解析回来:

https://github.com/tobiasholler/PyJSONSerialization/

解决这个问题有很多方法。'ObjDict' (pip install object)是另一个。重点是提供像javascript一样的对象,它也可以像字典一样最好地处理从JSON加载的数据,但还有其他功能也很有用。这为原始问题提供了另一种解决方案。

加拉科给出了一个非常简洁的答案。我需要修复一些小的东西,但这是有效的:

Code

# Your custom class
class MyCustom(object):
    def __json__(self):
        return {
            'a': self.a,
            'b': self.b,
            '__python__': 'mymodule.submodule:MyCustom.from_json',
        }

    to_json = __json__  # supported by simplejson

    @classmethod
    def from_json(cls, json):
        obj = cls()
        obj.a = json['a']
        obj.b = json['b']
        return obj

# Dumping and loading
import simplejson

obj = MyCustom()
obj.a = 3
obj.b = 4

json = simplejson.dumps(obj, for_json=True)

# Two-step loading
obj2_dict = simplejson.loads(json)
obj2 = MyCustom.from_json(obj2_dict)

# Make sure we have the correct thing
assert isinstance(obj2, MyCustom)
assert obj2.__dict__ == obj.__dict__

注意,加载需要两个步骤。现在是__python__属性 未使用。

这种情况有多普遍?

使用AlJohri的方法,我检查了流行的方法:

序列化(Python -> JSON):

To_json: 266,595 on 2018-06-27 toJSON: 96,307 on 2018-06-27 __json__: 8504 on 2018-06-27 For_json: 6937 on 2018-06-27

反序列化(JSON -> Python):

From_json: 226,101 on 2018-06-27