如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
当前回答
任何人都想在没有外部库的情况下使用基本转换,这只是如何使用以下方式覆盖自定义类的__iter__ & __str__函数。
class JSONCustomEncoder(json.JSONEncoder):
def default(self, obj):
return obj.__dict__
class Student:
def __init__(self, name: str, slug: str):
self.name = name
self.age = age
def __iter__(self):
yield from {
"name": self.name,
"age": self.age,
}.items()
def __str__(self):
return json.dumps(
self.__dict__, cls=JSONCustomEncoder, ensure_ascii=False
)
通过在dict()中进行包装来使用该对象,从而保留数据。
s = Student("aman", 24)
dict(s)
其他回答
如果你能够安装一个软件包,我建议你试试dill,它在我的项目中工作得很好。这个包的一个优点是它具有与pickle相同的接口,因此如果您已经在项目中使用了pickle,则可以简单地替换为dill并查看脚本是否运行,而无需更改任何代码。所以这是一个非常便宜的解决方案!
(完全反披露:我与莳萝项目没有任何关联,也从未参与过。)
安装包:
pip install dill
然后编辑你的代码导入莳萝而不是pickle:
# import pickle
import dill as pickle
运行脚本,看看它是否有效。(如果是的话,你可能想要清理你的代码,这样你就不再隐藏pickle模块的名字了!)
关于dill可以和不能序列化的数据类型的一些细节,来自项目页面:
dill can pickle the following standard types: none, type, bool, int, long, float, complex, str, unicode, tuple, list, dict, file, buffer, builtin, both old and new style classes, instances of old and new style classes, set, frozenset, array, functions, exceptions dill can also pickle more ‘exotic’ standard types: functions with yields, nested functions, lambdas, cell, method, unboundmethod, module, code, methodwrapper, dictproxy, methoddescriptor, getsetdescriptor, memberdescriptor, wrapperdescriptor, xrange, slice, notimplemented, ellipsis, quit dill cannot yet pickle these standard types: frame, generator, traceback
你们为什么要把事情搞得这么复杂?这里有一个简单的例子:
#!/usr/bin/env python3
import json
from dataclasses import dataclass
@dataclass
class Person:
first: str
last: str
age: int
@property
def __json__(self):
return {
"name": f"{self.first} {self.last}",
"age": self.age
}
john = Person("John", "Doe", 42)
print(json.dumps(john, indent=4, default=lambda x: x.__json__))
这样你也可以序列化嵌套类,因为__json__返回一个python对象而不是字符串。不需要使用JSONEncoder,因为使用简单lambda的默认参数也可以很好地工作。
我使用@property代替了一个简单的函数,因为这样感觉更自然和现代。@dataclass也只是一个例子,它也适用于“普通”类。
这是一个小库,它将一个对象及其所有子对象序列化为JSON,并将其解析回来:
https://github.com/tobiasholler/PyJSONSerialization/
解决这个问题有很多方法。'ObjDict' (pip install object)是另一个。重点是提供像javascript一样的对象,它也可以像字典一样最好地处理从JSON加载的数据,但还有其他功能也很有用。这为原始问题提供了另一种解决方案。
加拉科给出了一个非常简洁的答案。我需要修复一些小的东西,但这是有效的:
Code
# Your custom class
class MyCustom(object):
def __json__(self):
return {
'a': self.a,
'b': self.b,
'__python__': 'mymodule.submodule:MyCustom.from_json',
}
to_json = __json__ # supported by simplejson
@classmethod
def from_json(cls, json):
obj = cls()
obj.a = json['a']
obj.b = json['b']
return obj
# Dumping and loading
import simplejson
obj = MyCustom()
obj.a = 3
obj.b = 4
json = simplejson.dumps(obj, for_json=True)
# Two-step loading
obj2_dict = simplejson.loads(json)
obj2 = MyCustom.from_json(obj2_dict)
# Make sure we have the correct thing
assert isinstance(obj2, MyCustom)
assert obj2.__dict__ == obj.__dict__
注意,加载需要两个步骤。现在是__python__属性 未使用。
这种情况有多普遍?
使用AlJohri的方法,我检查了流行的方法:
序列化(Python -> JSON):
To_json: 266,595 on 2018-06-27 toJSON: 96,307 on 2018-06-27 __json__: 8504 on 2018-06-27 For_json: 6937 on 2018-06-27
反序列化(JSON -> Python):
From_json: 226,101 on 2018-06-27