Python包含了用于min-堆的heapq模块,但我需要一个max堆。在Python中我应该使用什么来实现最大堆?
当前回答
最好的方法:
from heapq import *
h = [5, 7, 9, 1, 3]
h_neg = [-i for i in h]
heapify(h_neg) # heapify
heappush(h_neg, -2) # push
print(-heappop(h_neg)) # pop
# 9
其他回答
python中有内置堆,但我只是想分享一下,如果有人像我一样想自己构建它。 我是python的新手,不要判断我是否犯了错误。 算法是有效的,但效率我不知道
class Heap :
def __init__(self):
self.heap = []
self.size = 0
def add(self, heap):
self.heap = heap
self.size = len(self.heap)
def heappush(self, value):
self.heap.append(value)
self.size += 1
def heapify(self, heap ,index=0):
mid = int(self.size /2)
"""
if you want to travel great value from bottom to the top you need to repeat swaping by the hight of the tree
I don't how how can i get the height of the tree that's why i use sezi/2
you can find height by this formula
2^(x) = size+1 why 2^x because tree is growing exponentially
xln(2) = ln(size+1)
x = ln(size+1)/ln(2)
"""
for i in range(mid):
self.createTee(heap ,index)
return heap
def createTee(self, heap ,shiftindex):
"""
"""
"""
this pos reffer to the index of the parent only parent with children
(1)
(2) (3) here the size of list is 7/2 = 3
(4) (5) (6) (7) the number of parent is 3 but we use {2,1,0} in while loop
that why a put pos -1
"""
pos = int(self.size /2 ) -1
"""
this if you wanna sort this heap list we should swap max value in the root of the tree with the last
value in the list and if you wanna repeat this until sort all list you will need to prevent the func from
change what we already sorted I should decrease the size of the list that will heapify on it
"""
newsize = self.size - shiftindex
while pos >= 0 :
left_child = pos * 2 + 1
right_child = pos * 2 + 2
# this mean that left child is exist
if left_child < newsize:
if right_child < newsize:
# if the right child exit we wanna check if left child > rightchild
# if right child doesn't exist we can check that we will get error out of range
if heap[pos] < heap[left_child] and heap[left_child] > heap[right_child] :
heap[left_child] , heap[pos] = heap[pos], heap[left_child]
# here if the righ child doesn't exist
else:
if heap[pos] < heap[left_child] :
heap[left_child] , heap[pos] = heap[pos], heap[left_child]
# if the right child exist
if right_child < newsize :
if heap[pos] < heap[right_child] :
heap[right_child], heap[pos] = heap[pos], heap[right_child]
pos -= 1
return heap
def sort(self ):
k = 1
for i in range(self.size -1 ,0 ,-1):
"""
because this is max heap we swap root with last element in the list
"""
self.heap [0] , self.heap[i] = self.heap[i], self.heap[0]
self.heapify(self.heap ,k)
k+=1
return self.heap
h = Heap()
h.add([5,7,0,8,9,10,20,30,50,-1] )
h.heappush(-2)
print(" before heapify ")
print(h.heap)
print(" after heapify ")
print(h.heapify(h.heap,0))
print(" after sort ")
print(h.sort())
输出:
之前heapify [5,7,0,8,9,10,20,30,50, -1, -2]
heapify后 [50, 30, 20, 8, 9, 10, 0, 7, 5, -1, -2]
排序后 [-2, -1, 0,5,7,8,9,10,20,30,50]
希望您能理解我的代码。如果有什么你不明白的地方,请发表评论,我会尽力帮助你
我创建了一个堆包装器,它将值颠倒以创建max-heap,还为min-heap创建了一个包装器类,以使库更像oop。这是要点。有三个班级;Heap(抽象类),HeapMin和HeapMax。
方法:
isempty() -> bool; obvious
getroot() -> int; returns min/max
push() -> None; equivalent to heapq.heappush
pop() -> int; equivalent to heapq.heappop
view_min()/view_max() -> int; alias for getroot()
pushpop() -> int; equivalent to heapq.pushpop
你可以使用
import heapq
listForTree = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
heapq.heapify(listForTree) # for a min heap
heapq._heapify_max(listForTree) # for a maxheap!!
如果你想要弹出元素,使用:
heapq.heappop(minheap) # pop from minheap
heapq._heappop_max(maxheap) # pop from maxheap
解决方案是当你在堆中存储你的值时对其求反,或者像这样反转你的对象比较:
import heapq
class MaxHeapObj(object):
def __init__(self, val): self.val = val
def __lt__(self, other): return self.val > other.val
def __eq__(self, other): return self.val == other.val
def __str__(self): return str(self.val)
max-heap的例子:
maxh = []
heapq.heappush(maxh, MaxHeapObj(x))
x = maxh[0].val # fetch max value
x = heapq.heappop(maxh).val # pop max value
但是您必须记住包装和打开您的值,这需要知道您正在处理的是最小堆还是最大堆。
MinHeap, MaxHeap类
为MinHeap和MaxHeap对象添加类可以简化代码:
class MinHeap(object):
def __init__(self): self.h = []
def heappush(self, x): heapq.heappush(self.h, x)
def heappop(self): return heapq.heappop(self.h)
def __getitem__(self, i): return self.h[i]
def __len__(self): return len(self.h)
class MaxHeap(MinHeap):
def heappush(self, x): heapq.heappush(self.h, MaxHeapObj(x))
def heappop(self): return heapq.heappop(self.h).val
def __getitem__(self, i): return self.h[i].val
使用示例:
minh = MinHeap()
maxh = MaxHeap()
# add some values
minh.heappush(12)
maxh.heappush(12)
minh.heappush(4)
maxh.heappush(4)
# fetch "top" values
print(minh[0], maxh[0]) # "4 12"
# fetch and remove "top" values
print(minh.heappop(), maxh.heappop()) # "4 12"
heapq模块拥有实现maxheap所需的一切。 它只做max-heap的堆推功能。 我已在下面示范如何克服这一点
在heapq模块中添加这个函数:
def _heappush_max(heap, item):
"""Push item onto heap, maintaining the heap invariant."""
heap.append(item)
_siftdown_max(heap, 0, len(heap)-1)
最后加上这句话:
try:
from _heapq import _heappush_max
except ImportError:
pass
瞧!这是完成了。
PS -转到heapq函数。首先在编辑器中写入“import heapq”,然后右键单击“heapq”并选择转到定义。
推荐文章
- 如何在交互式Python中查看整个命令历史?
- 如何显示有两个小数点后的浮点数?
- 如何用OpenCV2.0和Python2.6调整图像大小
- 在每个列表元素上调用int()函数?
- 当使用代码存储库时,如何引用资源的相对路径
- 如何在Flask-SQLAlchemy中按id删除记录
- 在Python中插入列表的第一个位置
- Python Pandas只合并某些列
- 如何在一行中连接两个集而不使用“|”
- 从字符串中移除前缀
- 代码结束时发出警报
- 如何在Python中按字母顺序排序字符串中的字母
- 在matplotlib中将y轴标签添加到次要y轴
- 如何消除数独方块的凹凸缺陷?
- 为什么出现这个UnboundLocalError(闭包)?