Python包含了用于min-堆的heapq模块,但我需要一个max堆。在Python中我应该使用什么来实现最大堆?


当前回答

python中有内置堆,但我只是想分享一下,如果有人像我一样想自己构建它。 我是python的新手,不要判断我是否犯了错误。 算法是有效的,但效率我不知道

class Heap :

    def __init__(self):
        self.heap = []
        self.size = 0


    def add(self, heap):
        self.heap = heap
        self.size = len(self.heap)

    def heappush(self, value):
        self.heap.append(value)
        self.size += 1


    def heapify(self, heap ,index=0):

        mid = int(self.size /2)
        """
            if you want to travel great value from bottom to the top you need to repeat swaping by the hight of the tree
            I  don't how how can i get the  height of the tree that's why i use sezi/2
            you can find height by this formula
            2^(x) = size+1  why 2^x because tree is growing exponentially 
            xln(2) = ln(size+1)
            x = ln(size+1)/ln(2)
        """

        for i in range(mid):
            self.createTee(heap ,index)

        return heap

    def createTee(self,  heap ,shiftindex):

        """
        """
        """

            this pos reffer to the index of the parent only parent with children
                    (1)
                (2)      (3)           here the size of list is 7/2 = 3
            (4)   (5)  (6)  (7)        the number of parent is 3 but we use {2,1,0} in while loop
                                       that why a put pos -1

        """
        pos = int(self.size /2 ) -1
        """
            this if you wanna sort this heap list we should swap max value in the root of the tree with the last
            value in the list and if you wanna repeat this until sort all list you will need to prevent the func from
            change what we already sorted I should decrease the size of the list that will heapify on it

        """

        newsize = self.size - shiftindex
        while pos >= 0 :
            left_child = pos * 2 + 1
            right_child = pos * 2 + 2
            # this mean that left child is exist
            if left_child < newsize:
                if right_child < newsize:
                    # if the right child exit we wanna check if left child > rightchild
                    # if right child doesn't exist we can check that we will get error out of range
                    if heap[pos] < heap[left_child] and heap[left_child]  > heap[right_child] :
                        heap[left_child] , heap[pos] = heap[pos], heap[left_child]
                # here if the righ child doesn't exist
                else:
                    if heap[pos] < heap[left_child] :
                        heap[left_child] , heap[pos] = heap[pos], heap[left_child]
            # if the right child exist
            if right_child < newsize :
                if heap[pos] < heap[right_child] :
                    heap[right_child], heap[pos] = heap[pos], heap[right_child]
            pos -= 1

        return heap

    def sort(self ):
        k = 1
        for i in range(self.size -1 ,0 ,-1):
            """
            because this is max heap we swap root with last element in the list

            """
            self.heap [0] , self.heap[i] = self.heap[i], self.heap[0]
            self.heapify(self.heap ,k)
            k+=1

        return self.heap


h = Heap()
h.add([5,7,0,8,9,10,20,30,50,-1] )
h.heappush(-2)
print(" before heapify ")
print(h.heap)
print(" after heapify ")
print(h.heapify(h.heap,0))
print(" after sort ")
print(h.sort())

输出:

之前heapify [5,7,0,8,9,10,20,30,50, -1, -2]

heapify后 [50, 30, 20, 8, 9, 10, 0, 7, 5, -1, -2]

排序后 [-2, -1, 0,5,7,8,9,10,20,30,50]

希望您能理解我的代码。如果有什么你不明白的地方,请发表评论,我会尽力帮助你

其他回答

我创建了一个堆包装器,它将值颠倒以创建max-heap,还为min-heap创建了一个包装器类,以使库更像oop。这是要点。有三个班级;Heap(抽象类),HeapMin和HeapMax。

方法:

isempty() -> bool; obvious
getroot() -> int; returns min/max
push() -> None; equivalent to heapq.heappush
pop() -> int; equivalent to heapq.heappop
view_min()/view_max() -> int; alias for getroot()
pushpop() -> int; equivalent to heapq.pushpop

你可以使用

import heapq
listForTree = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]    
heapq.heapify(listForTree)             # for a min heap
heapq._heapify_max(listForTree)        # for a maxheap!!

如果你想要弹出元素,使用:

heapq.heappop(minheap)      # pop from minheap
heapq._heappop_max(maxheap) # pop from maxheap

这是一个基于heapq的简单MaxHeap实现。虽然它只适用于数值。

import heapq
from typing import List


class MaxHeap:
    def __init__(self):
        self.data = []

    def top(self):
        return -self.data[0]

    def push(self, val):
        heapq.heappush(self.data, -val)

    def pop(self):
        return -heapq.heappop(self.data)

用法:

max_heap = MaxHeap()
max_heap.push(3)
max_heap.push(5)
max_heap.push(1)
print(max_heap.top())  # 5

我实现了一个最大堆版本的heapq,并将它提交给PyPI。(对heapq模块CPython代码的改动很小。)

https://pypi.python.org/pypi/heapq_max/

https://github.com/he-zhe/heapq_max

安装

pip install heapq_max

使用

dr:与heapq模块相同,只是所有函数都增加了' _max '。

heap_max = []                           # creates an empty heap
heappush_max(heap_max, item)            # pushes a new item on the heap
item = heappop_max(heap_max)            # pops the largest item from the heap
item = heap_max[0]                      # largest item on the heap without popping it
heapify_max(x)                          # transforms list into a heap, in-place, in linear time
item = heapreplace_max(heap_max, item)  # pops and returns largest item, and
                                    # adds new item; the heap size is unchanged

如果你想用max heap得到最大的K元素,你可以做下面的技巧:

nums= [3,2,1,5,6,4]
k = 2  #k being the kth largest element you want to get
heapq.heapify(nums) 
temp = heapq.nlargest(k, nums)
return temp[-1]