Python包含了用于min-堆的heapq模块,但我需要一个max堆。在Python中我应该使用什么来实现最大堆?
当前回答
我实现了一个最大堆版本的heapq,并将它提交给PyPI。(对heapq模块CPython代码的改动很小。)
https://pypi.python.org/pypi/heapq_max/
https://github.com/he-zhe/heapq_max
安装
pip install heapq_max
使用
dr:与heapq模块相同,只是所有函数都增加了' _max '。
heap_max = [] # creates an empty heap
heappush_max(heap_max, item) # pushes a new item on the heap
item = heappop_max(heap_max) # pops the largest item from the heap
item = heap_max[0] # largest item on the heap without popping it
heapify_max(x) # transforms list into a heap, in-place, in linear time
item = heapreplace_max(heap_max, item) # pops and returns largest item, and
# adds new item; the heap size is unchanged
其他回答
如果插入的键具有可比性但不像int型,则可能重写它们上的比较操作符(即<=变成>,>变成<=)。否则,您可以重写heapq。heapq模块中的_siftup(最后都是Python代码)。
这是一个基于heapq的简单MaxHeap实现。虽然它只适用于数值。
import heapq
from typing import List
class MaxHeap:
def __init__(self):
self.data = []
def top(self):
return -self.data[0]
def push(self, val):
heapq.heappush(self.data, -val)
def pop(self):
return -heapq.heappop(self.data)
用法:
max_heap = MaxHeap()
max_heap.push(3)
max_heap.push(5)
max_heap.push(1)
print(max_heap.top()) # 5
扩展int类并重写__lt__是一种方法。
import queue
class MyInt(int):
def __lt__(self, other):
return self > other
def main():
q = queue.PriorityQueue()
q.put(MyInt(10))
q.put(MyInt(5))
q.put(MyInt(1))
while not q.empty():
print (q.get())
if __name__ == "__main__":
main()
最简单的方法 就是把每个元素都转换成负数,问题就解决了。
import heapq
heap = []
heapq.heappush(heap, 1*(-1))
heapq.heappush(heap, 10*(-1))
heapq.heappush(heap, 20*(-1))
print(heap)
输出如下所示:
[-20, -1, -10]
如果你想用max heap得到最大的K元素,你可以做下面的技巧:
nums= [3,2,1,5,6,4]
k = 2 #k being the kth largest element you want to get
heapq.heapify(nums)
temp = heapq.nlargest(k, nums)
return temp[-1]
推荐文章
- 为什么我得到“'str'对象没有属性'读取'”当尝试使用' json。载入字符串?
- 不区分大小写的列表排序,没有降低结果?
- 排序后的语法(key=lambda:…)
- 在烧瓶中返回HTTP状态代码201
- 使用python创建一个简单的XML文件
- APT命令行界面式的yes/no输入?
- 如何打印出状态栏和百分比?
- 在Python中获取大文件的MD5哈希值
- 在Python格式字符串中%s是什么意思?
- 如何循环通过所有但最后一项的列表?
- 如何有效地清除std::queue ?
- python用什么方法避免默认参数为空列表?
- ValueError: numpy。Ndarray大小改变,可能表示二进制不兼容。期望从C头得到88,从PyObject得到80
- Anaconda /conda -安装特定的软件包版本
- 我在哪里调用Keras的BatchNormalization函数?