Python包含了用于min-堆的heapq模块,但我需要一个max堆。在Python中我应该使用什么来实现最大堆?


当前回答

你可以使用

import heapq
listForTree = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]    
heapq.heapify(listForTree)             # for a min heap
heapq._heapify_max(listForTree)        # for a maxheap!!

如果你想要弹出元素,使用:

heapq.heappop(minheap)      # pop from minheap
heapq._heappop_max(maxheap) # pop from maxheap

其他回答

允许您选择任意数量的最大或最小的项目

import heapq
heap = [23, 7, -4, 18, 23, 42, 37, 2, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
heapq.heapify(heap)
print(heapq.nlargest(3, heap))  # [42, 42, 37]
print(heapq.nsmallest(3, heap)) # [-4, -4, 2]

我实现了一个最大堆版本的heapq,并将它提交给PyPI。(对heapq模块CPython代码的改动很小。)

https://pypi.python.org/pypi/heapq_max/

https://github.com/he-zhe/heapq_max

安装

pip install heapq_max

使用

dr:与heapq模块相同,只是所有函数都增加了' _max '。

heap_max = []                           # creates an empty heap
heappush_max(heap_max, item)            # pushes a new item on the heap
item = heappop_max(heap_max)            # pops the largest item from the heap
item = heap_max[0]                      # largest item on the heap without popping it
heapify_max(x)                          # transforms list into a heap, in-place, in linear time
item = heapreplace_max(heap_max, item)  # pops and returns largest item, and
                                    # adds new item; the heap size is unchanged

解决方案是当你在堆中存储你的值时对其求反,或者像这样反转你的对象比较:

import heapq

class MaxHeapObj(object):
  def __init__(self, val): self.val = val
  def __lt__(self, other): return self.val > other.val
  def __eq__(self, other): return self.val == other.val
  def __str__(self): return str(self.val)

max-heap的例子:

maxh = []
heapq.heappush(maxh, MaxHeapObj(x))
x = maxh[0].val  # fetch max value
x = heapq.heappop(maxh).val  # pop max value

但是您必须记住包装和打开您的值,这需要知道您正在处理的是最小堆还是最大堆。

MinHeap, MaxHeap类

为MinHeap和MaxHeap对象添加类可以简化代码:

class MinHeap(object):
  def __init__(self): self.h = []
  def heappush(self, x): heapq.heappush(self.h, x)
  def heappop(self): return heapq.heappop(self.h)
  def __getitem__(self, i): return self.h[i]
  def __len__(self): return len(self.h)

class MaxHeap(MinHeap):
  def heappush(self, x): heapq.heappush(self.h, MaxHeapObj(x))
  def heappop(self): return heapq.heappop(self.h).val
  def __getitem__(self, i): return self.h[i].val

使用示例:

minh = MinHeap()
maxh = MaxHeap()
# add some values
minh.heappush(12)
maxh.heappush(12)
minh.heappush(4)
maxh.heappush(4)
# fetch "top" values
print(minh[0], maxh[0])  # "4 12"
# fetch and remove "top" values
print(minh.heappop(), maxh.heappop())  # "4 12"
arr = [3,4,5,1,2,3,0,7,8,90,67,31,2,5,567]
# max-heap sort will lead the array to assending order
def maxheap(arr,p):
    
    for i in range(len(arr)-p):
        if i > 0:
            child = i
            parent = (i+1)//2 - 1
            
            while arr[child]> arr[parent] and child !=0:
                arr[child], arr[parent] = arr[parent], arr[child]
                child = parent
                parent = (parent+1)//2 -1
                
    
def heapsort(arr):
    for i in range(len(arr)):
        maxheap(arr,i)
        arr[0], arr[len(arr)-i-1]=arr[len(arr)-i-1],arr[0]
        
    return arr
        

print(heapsort(arr))

试试这个

如果插入的键具有可比性但不像int型,则可能重写它们上的比较操作符(即<=变成>,>变成<=)。否则,您可以重写heapq。heapq模块中的_siftup(最后都是Python代码)。