Python包含了用于min-堆的heapq模块,但我需要一个max堆。在Python中我应该使用什么来实现最大堆?


当前回答

允许您选择任意数量的最大或最小的项目

import heapq
heap = [23, 7, -4, 18, 23, 42, 37, 2, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
heapq.heapify(heap)
print(heapq.nlargest(3, heap))  # [42, 42, 37]
print(heapq.nsmallest(3, heap)) # [-4, -4, 2]

其他回答

最简单的方法是反转键的值并使用heapq。例如,将1000.0转换为-1000.0,将5.0转换为-5.0。

如果插入的键具有可比性但不像int型,则可能重写它们上的比较操作符(即<=变成>,>变成<=)。否则,您可以重写heapq。heapq模块中的_siftup(最后都是Python代码)。

python中有内置堆,但我只是想分享一下,如果有人像我一样想自己构建它。 我是python的新手,不要判断我是否犯了错误。 算法是有效的,但效率我不知道

class Heap :

    def __init__(self):
        self.heap = []
        self.size = 0


    def add(self, heap):
        self.heap = heap
        self.size = len(self.heap)

    def heappush(self, value):
        self.heap.append(value)
        self.size += 1


    def heapify(self, heap ,index=0):

        mid = int(self.size /2)
        """
            if you want to travel great value from bottom to the top you need to repeat swaping by the hight of the tree
            I  don't how how can i get the  height of the tree that's why i use sezi/2
            you can find height by this formula
            2^(x) = size+1  why 2^x because tree is growing exponentially 
            xln(2) = ln(size+1)
            x = ln(size+1)/ln(2)
        """

        for i in range(mid):
            self.createTee(heap ,index)

        return heap

    def createTee(self,  heap ,shiftindex):

        """
        """
        """

            this pos reffer to the index of the parent only parent with children
                    (1)
                (2)      (3)           here the size of list is 7/2 = 3
            (4)   (5)  (6)  (7)        the number of parent is 3 but we use {2,1,0} in while loop
                                       that why a put pos -1

        """
        pos = int(self.size /2 ) -1
        """
            this if you wanna sort this heap list we should swap max value in the root of the tree with the last
            value in the list and if you wanna repeat this until sort all list you will need to prevent the func from
            change what we already sorted I should decrease the size of the list that will heapify on it

        """

        newsize = self.size - shiftindex
        while pos >= 0 :
            left_child = pos * 2 + 1
            right_child = pos * 2 + 2
            # this mean that left child is exist
            if left_child < newsize:
                if right_child < newsize:
                    # if the right child exit we wanna check if left child > rightchild
                    # if right child doesn't exist we can check that we will get error out of range
                    if heap[pos] < heap[left_child] and heap[left_child]  > heap[right_child] :
                        heap[left_child] , heap[pos] = heap[pos], heap[left_child]
                # here if the righ child doesn't exist
                else:
                    if heap[pos] < heap[left_child] :
                        heap[left_child] , heap[pos] = heap[pos], heap[left_child]
            # if the right child exist
            if right_child < newsize :
                if heap[pos] < heap[right_child] :
                    heap[right_child], heap[pos] = heap[pos], heap[right_child]
            pos -= 1

        return heap

    def sort(self ):
        k = 1
        for i in range(self.size -1 ,0 ,-1):
            """
            because this is max heap we swap root with last element in the list

            """
            self.heap [0] , self.heap[i] = self.heap[i], self.heap[0]
            self.heapify(self.heap ,k)
            k+=1

        return self.heap


h = Heap()
h.add([5,7,0,8,9,10,20,30,50,-1] )
h.heappush(-2)
print(" before heapify ")
print(h.heap)
print(" after heapify ")
print(h.heapify(h.heap,0))
print(" after sort ")
print(h.sort())

输出:

之前heapify [5,7,0,8,9,10,20,30,50, -1, -2]

heapify后 [50, 30, 20, 8, 9, 10, 0, 7, 5, -1, -2]

排序后 [-2, -1, 0,5,7,8,9,10,20,30,50]

希望您能理解我的代码。如果有什么你不明白的地方,请发表评论,我会尽力帮助你

你可以使用

import heapq
listForTree = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]    
heapq.heapify(listForTree)             # for a min heap
heapq._heapify_max(listForTree)        # for a maxheap!!

如果你想要弹出元素,使用:

heapq.heappop(minheap)      # pop from minheap
heapq._heappop_max(maxheap) # pop from maxheap

解决方案是当你在堆中存储你的值时对其求反,或者像这样反转你的对象比较:

import heapq

class MaxHeapObj(object):
  def __init__(self, val): self.val = val
  def __lt__(self, other): return self.val > other.val
  def __eq__(self, other): return self.val == other.val
  def __str__(self): return str(self.val)

max-heap的例子:

maxh = []
heapq.heappush(maxh, MaxHeapObj(x))
x = maxh[0].val  # fetch max value
x = heapq.heappop(maxh).val  # pop max value

但是您必须记住包装和打开您的值,这需要知道您正在处理的是最小堆还是最大堆。

MinHeap, MaxHeap类

为MinHeap和MaxHeap对象添加类可以简化代码:

class MinHeap(object):
  def __init__(self): self.h = []
  def heappush(self, x): heapq.heappush(self.h, x)
  def heappop(self): return heapq.heappop(self.h)
  def __getitem__(self, i): return self.h[i]
  def __len__(self): return len(self.h)

class MaxHeap(MinHeap):
  def heappush(self, x): heapq.heappush(self.h, MaxHeapObj(x))
  def heappop(self): return heapq.heappop(self.h).val
  def __getitem__(self, i): return self.h[i].val

使用示例:

minh = MinHeap()
maxh = MaxHeap()
# add some values
minh.heappush(12)
maxh.heappush(12)
minh.heappush(4)
maxh.heappush(4)
# fetch "top" values
print(minh[0], maxh[0])  # "4 12"
# fetch and remove "top" values
print(minh.heappop(), maxh.heappop())  # "4 12"