Python包含了用于min-堆的heapq模块,但我需要一个max堆。在Python中我应该使用什么来实现最大堆?


当前回答

我创建了一个堆包装器,它将值颠倒以创建max-heap,还为min-heap创建了一个包装器类,以使库更像oop。这是要点。有三个班级;Heap(抽象类),HeapMin和HeapMax。

方法:

isempty() -> bool; obvious
getroot() -> int; returns min/max
push() -> None; equivalent to heapq.heappush
pop() -> int; equivalent to heapq.heappop
view_min()/view_max() -> int; alias for getroot()
pushpop() -> int; equivalent to heapq.pushpop

其他回答

扩展int类并重写__lt__是一种方法。

import queue
class MyInt(int):
    def __lt__(self, other):
        return self > other

def main():
    q = queue.PriorityQueue()
    q.put(MyInt(10))
    q.put(MyInt(5))
    q.put(MyInt(1))
    while not q.empty():
        print (q.get())


if __name__ == "__main__":
    main()

heapq模块拥有实现maxheap所需的一切。 它只做max-heap的堆推功能。 我已在下面示范如何克服这一点

在heapq模块中添加这个函数:

def _heappush_max(heap, item):
    """Push item onto heap, maintaining the heap invariant."""
    heap.append(item)
    _siftdown_max(heap, 0, len(heap)-1)

最后加上这句话:

try:
    from _heapq import _heappush_max
except ImportError:
    pass

瞧!这是完成了。

PS -转到heapq函数。首先在编辑器中写入“import heapq”,然后右键单击“heapq”并选择转到定义。

允许您选择任意数量的最大或最小的项目

import heapq
heap = [23, 7, -4, 18, 23, 42, 37, 2, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
heapq.heapify(heap)
print(heapq.nlargest(3, heap))  # [42, 42, 37]
print(heapq.nsmallest(3, heap)) # [-4, -4, 2]

如果你想用max heap得到最大的K元素,你可以做下面的技巧:

nums= [3,2,1,5,6,4]
k = 2  #k being the kth largest element you want to get
heapq.heapify(nums) 
temp = heapq.nlargest(k, nums)
return temp[-1]

我实现了一个最大堆版本的heapq,并将它提交给PyPI。(对heapq模块CPython代码的改动很小。)

https://pypi.python.org/pypi/heapq_max/

https://github.com/he-zhe/heapq_max

安装

pip install heapq_max

使用

dr:与heapq模块相同,只是所有函数都增加了' _max '。

heap_max = []                           # creates an empty heap
heappush_max(heap_max, item)            # pushes a new item on the heap
item = heappop_max(heap_max)            # pops the largest item from the heap
item = heap_max[0]                      # largest item on the heap without popping it
heapify_max(x)                          # transforms list into a heap, in-place, in linear time
item = heapreplace_max(heap_max, item)  # pops and returns largest item, and
                                    # adds new item; the heap size is unchanged