你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?
一个简单的例子:
要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345
你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?
一个简单的例子:
要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345
当前回答
这也可以用来打印所有的答案
public void recur(int[] a, int n, int sum, int[] ans, int ind) {
if (n < 0 && sum != 0)
return;
if (n < 0 && sum == 0) {
print(ans, ind);
return;
}
if (sum >= a[n]) {
ans[ind] = a[n];
recur(a, n - 1, sum - a[n], ans, ind + 1);
}
recur(a, n - 1, sum, ans, ind);
}
public void print(int[] a, int n) {
for (int i = 0; i < n; i++)
System.out.print(a[i] + " ");
System.out.println();
}
时间复杂度是指数级的。2^n的阶
其他回答
c#版本的@msalvadores代码的答案
void Main()
{
int[] numbers = {3,9,8,4,5,7,10};
int target = 15;
sum_up(new List<int>(numbers.ToList()),target);
}
static void sum_up_recursive(List<int> numbers, int target, List<int> part)
{
int s = 0;
foreach (int x in part)
{
s += x;
}
if (s == target)
{
Console.WriteLine("sum(" + string.Join(",", part.Select(n => n.ToString()).ToArray()) + ")=" + target);
}
if (s >= target)
{
return;
}
for (int i = 0;i < numbers.Count;i++)
{
var remaining = new List<int>();
int n = numbers[i];
for (int j = i + 1; j < numbers.Count;j++)
{
remaining.Add(numbers[j]);
}
var part_rec = new List<int>(part);
part_rec.Add(n);
sum_up_recursive(remaining,target,part_rec);
}
}
static void sum_up(List<int> numbers, int target)
{
sum_up_recursive(numbers,target,new List<int>());
}
这类似于硬币更换问题
public class CoinCount
{
public static void main(String[] args)
{
int[] coins={1,4,6,2,3,5};
int count=0;
for (int i=0;i<coins.length;i++)
{
count=count+Count(9,coins,i,0);
}
System.out.println(count);
}
public static int Count(int Sum,int[] coins,int index,int curSum)
{
int count=0;
if (index>=coins.length)
return 0;
int sumNow=curSum+coins[index];
if (sumNow>Sum)
return 0;
if (sumNow==Sum)
return 1;
for (int i= index+1;i<coins.length;i++)
count+=Count(Sum,coins,i,sumNow);
return count;
}
}
这个问题可以通过所有可能的和的递归组合来解决,过滤掉那些达到目标的和。下面是Python中的算法:
def subset_sum(numbers, target, partial=[]):
s = sum(partial)
# check if the partial sum is equals to target
if s == target:
print "sum(%s)=%s" % (partial, target)
if s >= target:
return # if we reach the number why bother to continue
for i in range(len(numbers)):
n = numbers[i]
remaining = numbers[i+1:]
subset_sum(remaining, target, partial + [n])
if __name__ == "__main__":
subset_sum([3,9,8,4,5,7,10],15)
#Outputs:
#sum([3, 8, 4])=15
#sum([3, 5, 7])=15
#sum([8, 7])=15
#sum([5, 10])=15
这种类型的算法在接下来的斯坦福大学抽象编程课程中有很好的解释-这个视频非常推荐来理解递归是如何产生解决方案的排列的。
Edit
上面作为一个生成器函数,使它更有用一点。需要Python 3.3+,因为yield来自。
def subset_sum(numbers, target, partial=[], partial_sum=0):
if partial_sum == target:
yield partial
if partial_sum >= target:
return
for i, n in enumerate(numbers):
remaining = numbers[i + 1:]
yield from subset_sum(remaining, target, partial + [n], partial_sum + n)
下面是相同算法的Java版本:
package tmp;
import java.util.ArrayList;
import java.util.Arrays;
class SumSet {
static void sum_up_recursive(ArrayList<Integer> numbers, int target, ArrayList<Integer> partial) {
int s = 0;
for (int x: partial) s += x;
if (s == target)
System.out.println("sum("+Arrays.toString(partial.toArray())+")="+target);
if (s >= target)
return;
for(int i=0;i<numbers.size();i++) {
ArrayList<Integer> remaining = new ArrayList<Integer>();
int n = numbers.get(i);
for (int j=i+1; j<numbers.size();j++) remaining.add(numbers.get(j));
ArrayList<Integer> partial_rec = new ArrayList<Integer>(partial);
partial_rec.add(n);
sum_up_recursive(remaining,target,partial_rec);
}
}
static void sum_up(ArrayList<Integer> numbers, int target) {
sum_up_recursive(numbers,target,new ArrayList<Integer>());
}
public static void main(String args[]) {
Integer[] numbers = {3,9,8,4,5,7,10};
int target = 15;
sum_up(new ArrayList<Integer>(Arrays.asList(numbers)),target);
}
}
这是完全相同的启发式。我的Java有点生疏,但我认为很容易理解。
Java解决方案的c#转换(by @JeremyThompson)
public static void Main(string[] args)
{
List<int> numbers = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
int target = 15;
sum_up(numbers, target);
}
private static void sum_up(List<int> numbers, int target)
{
sum_up_recursive(numbers, target, new List<int>());
}
private static void sum_up_recursive(List<int> numbers, int target, List<int> partial)
{
int s = 0;
foreach (int x in partial) s += x;
if (s == target)
Console.WriteLine("sum(" + string.Join(",", partial.ToArray()) + ")=" + target);
if (s >= target)
return;
for (int i = 0; i < numbers.Count; i++)
{
List<int> remaining = new List<int>();
int n = numbers[i];
for (int j = i + 1; j < numbers.Count; j++) remaining.Add(numbers[j]);
List<int> partial_rec = new List<int>(partial);
partial_rec.Add(n);
sum_up_recursive(remaining, target, partial_rec);
}
}
Ruby解决方案:(by @emaillenin)
def subset_sum(numbers, target, partial=[])
s = partial.inject 0, :+
# check if the partial sum is equals to target
puts "sum(#{partial})=#{target}" if s == target
return if s >= target # if we reach the number why bother to continue
(0..(numbers.length - 1)).each do |i|
n = numbers[i]
remaining = numbers.drop(i+1)
subset_sum(remaining, target, partial + [n])
end
end
subset_sum([3,9,8,4,5,7,10],15)
编辑:复杂性讨论
正如其他人提到的,这是一个np难题。它可以在O(2^n)的指数时间内求解,例如n=10,将有1024个可能的解。如果你要达到的目标是在一个较低的范围内,那么这个算法是有效的。例如:
Subset_sum([1,2,3,4,5,6,7,8,9,10],100000)生成1024个分支,因为目标永远无法过滤出可能的解。
另一方面,subset_sum([1,2,3,4,5,6,7,8,9,10],10)只生成175个分支,因为达到10的目标要过滤掉许多组合。
如果N和目标都是很大的数字,那么就应该得到近似的解。
这也可以用来打印所有的答案
public void recur(int[] a, int n, int sum, int[] ans, int ind) {
if (n < 0 && sum != 0)
return;
if (n < 0 && sum == 0) {
print(ans, ind);
return;
}
if (sum >= a[n]) {
ans[ind] = a[n];
recur(a, n - 1, sum - a[n], ans, ind + 1);
}
recur(a, n - 1, sum, ans, ind);
}
public void print(int[] a, int n) {
for (int i = 0; i < n; i++)
System.out.print(a[i] + " ");
System.out.println();
}
时间复杂度是指数级的。2^n的阶
用excel找到组合(相当容易)。 (你的电脑不能太慢)
去这个网站 进入“Sum to Target”页面 下载“Sum to Target”excel文件。 按照网站页面上的说明操作。
希望这能有所帮助。