你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?

一个简单的例子:

要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345


当前回答

首先推导0。0是加法的一个恒等式所以在这个特殊情况下,它在单类定律下是没有用的。如果你想向上爬到一个正数,也可以推导出负数。否则还需要做减法运算。

所以…在这个特定的作业中,你能得到的最快算法如下所示。

函数items2T ([n,……ns), t) { Var c = ~~(t/n); 返回ns。长度呢?数组(c + 1) .fill () .reduce((r,_,i) => r.concat(items2T(ns, t-n*i)。map(s => Array(i).fill(n).concat(s))),[]) : t % n ?[] :[数组(c) .fill (n)); }; Var数据= [3,9,8,4,5,7,10], 结果; console.time(“组合”); result = items2T(data, 15); console.timeEnd(“组合”); console.log (JSON.stringify(结果));

这是一个非常快的算法,但如果你对数据数组进行降序排序,它会更快。使用.sort()是无关紧要的,因为算法最终会减少递归调用。

其他回答

我想我应该用这个问题的答案,但我不能,所以这是我的答案。它使用的是《计算机程序的结构和解释》中答案的修改版本。我认为这是一个更好的递归解,应该更能取悦纯粹主义者。

我的答案是用Scala(如果我的Scala很烂,我很抱歉,我刚刚开始学习)。findsumcombination的疯狂之处在于对递归的原始列表进行排序和惟一,以防止欺骗。

def findSumCombinations(target: Int, numbers: List[Int]): Int = {
  cc(target, numbers.distinct.sortWith(_ < _), List())
}

def cc(target: Int, numbers: List[Int], solution: List[Int]): Int = {
  if (target == 0) {println(solution); 1 }
  else if (target < 0 || numbers.length == 0) 0
  else 
    cc(target, numbers.tail, solution) 
    + cc(target - numbers.head, numbers, numbers.head :: solution)
}

使用它:

 > findSumCombinations(12345, List(1,5,22,15,0,..))
 * Prints a whole heap of lists that will sum to the target *
func sum(array : [Int]) -> Int{
    var sum = 0
    array.forEach { (item) in
        sum = item + sum
    }
    return sum
}
func susetNumbers(array :[Int], target : Int, subsetArray: [Int],result : inout [[Int]]) -> [[Int]]{
    let s = sum(array: subsetArray)
    if(s == target){
        print("sum\(subsetArray) = \(target)")
        result.append(subsetArray)
    }
    for i in 0..<array.count{
        let n = array[i]
        let remaning = Array(array[(i+1)..<array.count])
        susetNumbers(array: remaning, target: target, subsetArray: subsetArray + [n], result: &result)
        
    }
    return result
}

 var resultArray = [[Int]]()
    let newA = susetNumbers(array: [1,2,3,4,5], target: 5, subsetArray: [],result:&resultArray)
    print(resultArray)

这个问题的一个迭代c++堆栈解决方案。与其他迭代解决方案不同的是,它不会对中间序列进行不必要的复制。

#include <vector>
#include <iostream>

// Given a positive integer, return all possible combinations of
// positive integers that sum up to it.

std::vector<std::vector<int>> print_all_sum(int target){
    std::vector<std::vector<int>> output;
    std::vector<int> stack;

    int curr_min = 1;
    int sum = 0;
    while (curr_min < target) {
        sum += curr_min;
        if (sum >= target) {
            if (sum == target) {
                output.push_back(stack); // make a copy
                output.back().push_back(curr_min);
            }
            sum -= curr_min + stack.back();
            curr_min = stack.back() + 1;
            stack.pop_back();
        } else {
            stack.push_back(curr_min);
        }
    }

    return output;
}

int main()
{
    auto vvi = print_all_sum(6);

    for (auto const& v: vvi) {
        for(auto const& i: v) {
        std::cout << i;
        }
        std::cout << "\n";
    }

    return 0;
}

输出print_all_sum (6):

111111
11112
1113
1122
114
123
15
222
24
33

另一个python解决方案是使用itertools.combination模块,如下所示:

#!/usr/local/bin/python

from itertools import combinations

def find_sum_in_list(numbers, target):
    results = []
    for x in range(len(numbers)):
        results.extend(
            [   
                combo for combo in combinations(numbers ,x)  
                    if sum(combo) == target
            ]   
        )   

    print results

if __name__ == "__main__":
    find_sum_in_list([3,9,8,4,5,7,10], 15)

输出:[(8,7),(5,10),(3,8,4),(3,5,7)]

下面是一个更好的版本,具有更好的输出格式和c++ 11特性:

void subset_sum_rec(std::vector<int> & nums, const int & target, std::vector<int> & partialNums) 
{
    int currentSum = std::accumulate(partialNums.begin(), partialNums.end(), 0);
    if (currentSum > target)
        return;
    if (currentSum == target) 
    {
        std::cout << "sum([";
        for (auto it = partialNums.begin(); it != std::prev(partialNums.end()); ++it)
            cout << *it << ",";
        cout << *std::prev(partialNums.end());
        std::cout << "])=" << target << std::endl;
    }
    for (auto it = nums.begin(); it != nums.end(); ++it) 
    {
        std::vector<int> remaining;
        for (auto it2 = std::next(it); it2 != nums.end(); ++it2)
            remaining.push_back(*it2);

        std::vector<int> partial = partialNums;
        partial.push_back(*it);
        subset_sum_rec(remaining, target, partial);
    }
}