你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?

一个简单的例子:

要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345


当前回答

另一个python解决方案是使用itertools.combination模块,如下所示:

#!/usr/local/bin/python

from itertools import combinations

def find_sum_in_list(numbers, target):
    results = []
    for x in range(len(numbers)):
        results.extend(
            [   
                combo for combo in combinations(numbers ,x)  
                    if sum(combo) == target
            ]   
        )   

    print results

if __name__ == "__main__":
    find_sum_in_list([3,9,8,4,5,7,10], 15)

输出:[(8,7),(5,10),(3,8,4),(3,5,7)]

其他回答

我不喜欢上面看到的Javascript解决方案。下面是我使用部分应用、闭包和递归构建的一个:

好的,我主要关心的是,如果组合数组能满足目标要求,希望这样你就能找到剩下的组合了

这里只需要设置目标并传递组合数组。

function main() {
    const target = 10
    const getPermutationThatSumT = setTarget(target)
    const permutation = getPermutationThatSumT([1, 4, 2, 5, 6, 7])

    console.log( permutation );
}

我提出的当前实现

function setTarget(target) {
    let partial = [];

    return function permute(input) {
        let i, removed;
        for (i = 0; i < input.length; i++) {
            removed = input.splice(i, 1)[0];
            partial.push(removed);

            const sum = partial.reduce((a, b) => a + b)
            if (sum === target) return partial.slice()
            if (sum < target) permute(input)

            input.splice(i, 0, removed);
            partial.pop();
        }
        return null
    };
}
func sum(array : [Int]) -> Int{
    var sum = 0
    array.forEach { (item) in
        sum = item + sum
    }
    return sum
}
func susetNumbers(array :[Int], target : Int, subsetArray: [Int],result : inout [[Int]]) -> [[Int]]{
    let s = sum(array: subsetArray)
    if(s == target){
        print("sum\(subsetArray) = \(target)")
        result.append(subsetArray)
    }
    for i in 0..<array.count{
        let n = array[i]
        let remaning = Array(array[(i+1)..<array.count])
        susetNumbers(array: remaning, target: target, subsetArray: subsetArray + [n], result: &result)
        
    }
    return result
}

 var resultArray = [[Int]]()
    let newA = susetNumbers(array: [1,2,3,4,5], target: 5, subsetArray: [],result:&resultArray)
    print(resultArray)

这是R中的一个解

subset_sum = function(numbers,target,partial=0){
  if(any(is.na(partial))) return()
  s = sum(partial)
  if(s == target) print(sprintf("sum(%s)=%s",paste(partial[-1],collapse="+"),target))
  if(s > target) return()
  for( i in seq_along(numbers)){
    n = numbers[i]
    remaining = numbers[(i+1):length(numbers)]
    subset_sum(remaining,target,c(partial,n))
  }
}

下面是一个更好的版本,具有更好的输出格式和c++ 11特性:

void subset_sum_rec(std::vector<int> & nums, const int & target, std::vector<int> & partialNums) 
{
    int currentSum = std::accumulate(partialNums.begin(), partialNums.end(), 0);
    if (currentSum > target)
        return;
    if (currentSum == target) 
    {
        std::cout << "sum([";
        for (auto it = partialNums.begin(); it != std::prev(partialNums.end()); ++it)
            cout << *it << ",";
        cout << *std::prev(partialNums.end());
        std::cout << "])=" << target << std::endl;
    }
    for (auto it = nums.begin(); it != nums.end(); ++it) 
    {
        std::vector<int> remaining;
        for (auto it2 = std::next(it); it2 != nums.end(); ++it2)
            remaining.push_back(*it2);

        std::vector<int> partial = partialNums;
        partial.push_back(*it);
        subset_sum_rec(remaining, target, partial);
    }
}

首先推导0。0是加法的一个恒等式所以在这个特殊情况下,它在单类定律下是没有用的。如果你想向上爬到一个正数,也可以推导出负数。否则还需要做减法运算。

所以…在这个特定的作业中,你能得到的最快算法如下所示。

函数items2T ([n,……ns), t) { Var c = ~~(t/n); 返回ns。长度呢?数组(c + 1) .fill () .reduce((r,_,i) => r.concat(items2T(ns, t-n*i)。map(s => Array(i).fill(n).concat(s))),[]) : t % n ?[] :[数组(c) .fill (n)); }; Var数据= [3,9,8,4,5,7,10], 结果; console.time(“组合”); result = items2T(data, 15); console.timeEnd(“组合”); console.log (JSON.stringify(结果));

这是一个非常快的算法,但如果你对数据数组进行降序排序,它会更快。使用.sort()是无关紧要的,因为算法最终会减少递归调用。