你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?
一个简单的例子:
要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345
你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?
一个简单的例子:
要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345
当前回答
import java.util.*;
public class Main{
int recursionDepth = 0;
private int[][] memo;
public static void main(String []args){
int[] nums = new int[] {5,2,4,3,1};
int N = nums.length;
Main main = new Main();
main.memo = new int[N+1][N+1];
main._findCombo(0, N-1,nums, 8, 0, new LinkedList() );
System.out.println(main.recursionDepth);
}
private void _findCombo(
int from,
int to,
int[] nums,
int targetSum,
int currentSum,
LinkedList<Integer> list){
if(memo[from][to] != 0) {
currentSum = currentSum + memo[from][to];
}
if(currentSum > targetSum) {
return;
}
if(currentSum == targetSum) {
System.out.println("Found - " +list);
return;
}
recursionDepth++;
for(int i= from ; i <= to; i++){
list.add(nums[i]);
memo[from][i] = currentSum + nums[i];
_findCombo(i+1, to,nums, targetSum, memo[from][i], list);
list.removeLast();
}
}
}
其他回答
我想我应该用这个问题的答案,但我不能,所以这是我的答案。它使用的是《计算机程序的结构和解释》中答案的修改版本。我认为这是一个更好的递归解,应该更能取悦纯粹主义者。
我的答案是用Scala(如果我的Scala很烂,我很抱歉,我刚刚开始学习)。findsumcombination的疯狂之处在于对递归的原始列表进行排序和惟一,以防止欺骗。
def findSumCombinations(target: Int, numbers: List[Int]): Int = {
cc(target, numbers.distinct.sortWith(_ < _), List())
}
def cc(target: Int, numbers: List[Int], solution: List[Int]): Int = {
if (target == 0) {println(solution); 1 }
else if (target < 0 || numbers.length == 0) 0
else
cc(target, numbers.tail, solution)
+ cc(target - numbers.head, numbers, numbers.head :: solution)
}
使用它:
> findSumCombinations(12345, List(1,5,22,15,0,..))
* Prints a whole heap of lists that will sum to the target *
下面是一个更好的版本,具有更好的输出格式和c++ 11特性:
void subset_sum_rec(std::vector<int> & nums, const int & target, std::vector<int> & partialNums)
{
int currentSum = std::accumulate(partialNums.begin(), partialNums.end(), 0);
if (currentSum > target)
return;
if (currentSum == target)
{
std::cout << "sum([";
for (auto it = partialNums.begin(); it != std::prev(partialNums.end()); ++it)
cout << *it << ",";
cout << *std::prev(partialNums.end());
std::cout << "])=" << target << std::endl;
}
for (auto it = nums.begin(); it != nums.end(); ++it)
{
std::vector<int> remaining;
for (auto it2 = std::next(it); it2 != nums.end(); ++it2)
remaining.push_back(*it2);
std::vector<int> partial = partialNums;
partial.push_back(*it);
subset_sum_rec(remaining, target, partial);
}
}
首先推导0。0是加法的一个恒等式所以在这个特殊情况下,它在单类定律下是没有用的。如果你想向上爬到一个正数,也可以推导出负数。否则还需要做减法运算。
所以…在这个特定的作业中,你能得到的最快算法如下所示。
函数items2T ([n,……ns), t) { Var c = ~~(t/n); 返回ns。长度呢?数组(c + 1) .fill () .reduce((r,_,i) => r.concat(items2T(ns, t-n*i)。map(s => Array(i).fill(n).concat(s))),[]) : t % n ?[] :[数组(c) .fill (n)); }; Var数据= [3,9,8,4,5,7,10], 结果; console.time(“组合”); result = items2T(data, 15); console.timeEnd(“组合”); console.log (JSON.stringify(结果));
这是一个非常快的算法,但如果你对数据数组进行降序排序,它会更快。使用.sort()是无关紧要的,因为算法最终会减少递归调用。
在Haskell:
filter ((==) 12345 . sum) $ subsequences [1,5,22,15,0,..]
J:
(]#~12345=+/@>)(]<@#~[:#:@i.2^#)1 5 22 15 0 ...
正如您可能注意到的,两者都采用相同的方法,并将问题分为两部分:生成幂集的每个成员,并检查每个成员与目标的和。
还有其他的解决方案,但这是最直接的。
在这两种方法中,你是否需要帮助,或者找到另一种方法?
这是R中的一个解
subset_sum = function(numbers,target,partial=0){
if(any(is.na(partial))) return()
s = sum(partial)
if(s == target) print(sprintf("sum(%s)=%s",paste(partial[-1],collapse="+"),target))
if(s > target) return()
for( i in seq_along(numbers)){
n = numbers[i]
remaining = numbers[(i+1):length(numbers)]
subset_sum(remaining,target,c(partial,n))
}
}