你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?
一个简单的例子:
要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345
你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?
一个简单的例子:
要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345
当前回答
到目前为止,有很多解决方案,但都是生成然后过滤的形式。这意味着他们可能会在递归路径上花费大量时间,而这些递归路径不会导致解决方案。
这里的解决方案是O(size_of_array * (number_of_sum + number_of_solutions))。换句话说,它使用动态规划来避免列举永远不会匹配的可能解决方案。
为了搞笑,我让这个函数同时使用正数和负数,并让它成为一个迭代器。它适用于Python 2.3+。
def subset_sum_iter(array, target):
sign = 1
array = sorted(array)
if target < 0:
array = reversed(array)
sign = -1
# Checkpoint A
last_index = {0: [-1]}
for i in range(len(array)):
for s in list(last_index.keys()):
new_s = s + array[i]
if 0 < (new_s - target) * sign:
pass # Cannot lead to target
elif new_s in last_index:
last_index[new_s].append(i)
else:
last_index[new_s] = [i]
# Checkpoint B
# Now yield up the answers.
def recur(new_target, max_i):
for i in last_index[new_target]:
if i == -1:
yield [] # Empty sum.
elif max_i <= i:
break # Not our solution.
else:
for answer in recur(new_target - array[i], i):
answer.append(array[i])
yield answer
for answer in recur(target, len(array)):
yield answer
这里有一个例子,它与数组和目标一起使用,在其他解决方案中使用的过滤方法实际上永远不会结束。
def is_prime(n):
for i in range(2, n):
if 0 == n % i:
return False
elif n < i * i:
return True
if n == 2:
return True
else:
return False
def primes(limit):
n = 2
while True:
if is_prime(n):
yield(n)
n = n + 1
if limit < n:
break
for answer in subset_sum_iter(primes(1000), 76000):
print(answer)
这将在2秒内打印所有522个答案。之前的方法如果能在宇宙当前的生命周期内找到答案,那就太幸运了。(整个空间有2^168 = 3.74144419156711e+50个可能的组合。那需要一段时间。)
解释 我被要求解释代码,但解释数据结构通常更能说明问题。我来解释一下数据结构。
让我们考虑subset_sum_iter([2, 2、3、3、5、5、7、7、-11、11),10)。
在检查点A,我们已经意识到我们的目标是正的,所以符号= 1。我们已经对输入进行了排序,使array =[-11, -7, -5, -3, -2, 2,3,5,7,11]。由于我们经常通过索引访问它,下面是从索引到值的映射:
0: -11
1: -7
2: -5
3: -3
4: -2
5: 2
6: 3
7: 5
8: 7
9: 11
通过检查点B,我们使用动态规划生成last_index数据结构。它包含什么?
last_index = {
-28: [4],
-26: [3, 5],
-25: [4, 6],
-24: [5],
-23: [2, 4, 5, 6, 7],
-22: [6],
-21: [3, 4, 5, 6, 7, 8],
-20: [4, 6, 7],
-19: [3, 5, 7, 8],
-18: [1, 4, 5, 6, 7, 8],
-17: [4, 5, 6, 7, 8, 9],
-16: [2, 4, 5, 6, 7, 8],
-15: [3, 5, 6, 7, 8, 9],
-14: [3, 4, 5, 6, 7, 8, 9],
-13: [4, 5, 6, 7, 8, 9],
-12: [2, 4, 5, 6, 7, 8, 9],
-11: [0, 5, 6, 7, 8, 9],
-10: [3, 4, 5, 6, 7, 8, 9],
-9: [4, 5, 6, 7, 8, 9],
-8: [3, 5, 6, 7, 8, 9],
-7: [1, 4, 5, 6, 7, 8, 9],
-6: [5, 6, 7, 8, 9],
-5: [2, 4, 5, 6, 7, 8, 9],
-4: [6, 7, 8, 9],
-3: [3, 5, 6, 7, 8, 9],
-2: [4, 6, 7, 8, 9],
-1: [5, 7, 8, 9],
0: [-1, 5, 6, 7, 8, 9],
1: [6, 7, 8, 9],
2: [5, 6, 7, 8, 9],
3: [6, 7, 8, 9],
4: [7, 8, 9],
5: [6, 7, 8, 9],
6: [7, 8, 9],
7: [7, 8, 9],
8: [7, 8, 9],
9: [8, 9],
10: [7, 8, 9]
}
(旁注,它不是对称的,因为条件if 0 < (new_s - target) *符号阻止我们记录超过target的任何内容,在我们的例子中是10。)
这是什么意思?以条目10为例:[7,8,9]。这意味着我们可以得到10的最终和,最后选择的数字在索引7、8或9处。也就是说,最后选择的数字可以是5,7或11。
让我们仔细看看如果我们选择索引7会发生什么。这意味着我们以5结束。因此,在得到下标7之前,我们必须得到10-5 = 5。5的条目为5:[6,7,8,9]。所以我们可以选择指数6,也就是3。虽然我们在第7、8和9处得到了5,但在第7号下标之前我们没有得到5。所以倒数第二个选项是指数6处的3。
现在我们要在下标6之前得到5-3 = 2。条目2是:2:[5,6,7,8,9]。同样,我们只关心下标5的答案因为其他的都发生得太晚了。所以倒数第三个选项是指数5处的2。
最后我们要在下标5之前得到2-2 = 0。条目0表示:0:[- 1,5,6,7,8,9]。同样,我们只关心-1。但是-1不是下标实际上我用它来表示我们已经完成了选择。
我们求出了2+3+5 = 10的解。这是我们打印出来的第一个解。
现在我们来看递归子函数。因为它是在main函数内部定义的,所以它可以看到last_index。
首先要注意的是,它调用的是yield,而不是return。这使它成为一个发电机。当你调用它时,你会返回一个特殊类型的迭代器。当你循环遍历那个迭代器时,你会得到一个它能产生的所有东西的列表。但你是在生成它们时得到它们的。如果它是一个很长的列表,你不把它放在内存中。(有点重要,因为我们可以得到一个很长的列表。)
recur(new_target, max_i)将产生的结果是你可以用数组中最大索引为max_i的元素求和为new_target的所有方法。这就是它的答案:“我们必须在索引max_i+1之前到达new_target。”当然,它是递归的。
因此,recur(target, len(array))是所有使用任意索引到达目标的解。这就是我们想要的。
其他回答
非常有效的算法,使用我几年前用c++写的表格。
如果你设置PRINT 1,它将打印所有的组合(但它不会使用有效的方法)。
它非常高效,在不到10毫秒的时间内计算了超过10^14个组合。
#include <stdio.h>
#include <stdlib.h>
//#include "CTime.h"
#define SUM 300
#define MAXNUMsSIZE 30
#define PRINT 0
long long CountAddToSum(int,int[],int,const int[],int);
void printr(const int[], int);
long long table1[SUM][MAXNUMsSIZE];
int main()
{
int Nums[]={3,4,5,6,7,9,13,11,12,13,22,35,17,14,18,23,33,54};
int sum=SUM;
int size=sizeof(Nums)/sizeof(int);
int i,j,a[]={0};
long long N=0;
//CTime timer1;
for(i=0;i<SUM;++i)
for(j=0;j<MAXNUMsSIZE;++j)
table1[i][j]=-1;
N = CountAddToSum(sum,Nums,size,a,0); //algorithm
//timer1.Get_Passd();
//printf("\nN=%lld time=%.1f ms\n", N,timer1.Get_Passd());
printf("\nN=%lld \n", N);
getchar();
return 1;
}
long long CountAddToSum(int s, int arr[],int arrsize, const int r[],int rsize)
{
static int totalmem=0, maxmem=0;
int i,*rnew;
long long result1=0,result2=0;
if(s<0) return 0;
if (table1[s][arrsize]>0 && PRINT==0) return table1[s][arrsize];
if(s==0)
{
if(PRINT) printr(r, rsize);
return 1;
}
if(arrsize==0) return 0;
//else
rnew=(int*)malloc((rsize+1)*sizeof(int));
for(i=0;i<rsize;++i) rnew[i]=r[i];
rnew[rsize]=arr[arrsize-1];
result1 = CountAddToSum(s,arr,arrsize-1,rnew,rsize);
result2 = CountAddToSum(s-arr[arrsize-1],arr,arrsize,rnew,rsize+1);
table1[s][arrsize]=result1+result2;
free(rnew);
return result1+result2;
}
void printr(const int r[], int rsize)
{
int lastr=r[0],count=0,i;
for(i=0; i<rsize;++i)
{
if(r[i]==lastr)
count++;
else
{
printf(" %d*%d ",count,lastr);
lastr=r[i];
count=1;
}
}
if(r[i-1]==lastr) printf(" %d*%d ",count,lastr);
printf("\n");
}
PHP版本,灵感来自Keith Beller的c#版本。
bala的PHP版本不适合我,因为我不需要对数字进行分组。我想要一个更简单的实现,只有一个目标值和一个数字池。这个函数也会删除任何重复的条目。
编辑25/10/2021:添加精度参数以支持浮点数(现在需要bcmath扩展)。
/**
* Calculates a subset sum: finds out which combinations of numbers
* from the numbers array can be added together to come to the target
* number.
*
* Returns an indexed array with arrays of number combinations.
*
* Example:
*
* <pre>
* $matches = subset_sum(array(5,10,7,3,20), 25);
* </pre>
*
* Returns:
*
* <pre>
* Array
* (
* [0] => Array
* (
* [0] => 3
* [1] => 5
* [2] => 7
* [3] => 10
* )
* [1] => Array
* (
* [0] => 5
* [1] => 20
* )
* )
* </pre>
*
* @param number[] $numbers
* @param number $target
* @param array $part
* @param int $precision
* @return array[number[]]
*/
function subset_sum($numbers, $target, $precision=0, $part=null)
{
// we assume that an empty $part variable means this
// is the top level call.
$toplevel = false;
if($part === null) {
$toplevel = true;
$part = array();
}
$s = 0;
foreach($part as $x)
{
$s = $s + $x;
}
// we have found a match!
if(bccomp((string) $s, (string) $target, $precision) === 0)
{
sort($part); // ensure the numbers are always sorted
return array(implode('|', $part));
}
// gone too far, break off
if($s >= $target)
{
return null;
}
$matches = array();
$totalNumbers = count($numbers);
for($i=0; $i < $totalNumbers; $i++)
{
$remaining = array();
$n = $numbers[$i];
for($j = $i+1; $j < $totalNumbers; $j++)
{
$remaining[] = $numbers[$j];
}
$part_rec = $part;
$part_rec[] = $n;
$result = subset_sum($remaining, $target, $precision, $part_rec);
if($result)
{
$matches = array_merge($matches, $result);
}
}
if(!$toplevel)
{
return $matches;
}
// this is the top level function call: we have to
// prepare the final result value by stripping any
// duplicate results.
$matches = array_unique($matches);
$result = array();
foreach($matches as $entry)
{
$result[] = explode('|', $entry);
}
return $result;
}
例子:
$result = subset_sum(array(5, 10, 7, 3, 20), 25);
这将返回一个包含两个数字组合数组的索引数组:
3, 5, 7, 10
5, 20
浮点数示例:
// Specify the precision in the third argument
$result = subset_sum(array(0.40, 0.03, 0.05), 0.45, 2);
这将返回一个匹配项:
0.40, 0.05
到目前为止,有很多解决方案,但都是生成然后过滤的形式。这意味着他们可能会在递归路径上花费大量时间,而这些递归路径不会导致解决方案。
这里的解决方案是O(size_of_array * (number_of_sum + number_of_solutions))。换句话说,它使用动态规划来避免列举永远不会匹配的可能解决方案。
为了搞笑,我让这个函数同时使用正数和负数,并让它成为一个迭代器。它适用于Python 2.3+。
def subset_sum_iter(array, target):
sign = 1
array = sorted(array)
if target < 0:
array = reversed(array)
sign = -1
# Checkpoint A
last_index = {0: [-1]}
for i in range(len(array)):
for s in list(last_index.keys()):
new_s = s + array[i]
if 0 < (new_s - target) * sign:
pass # Cannot lead to target
elif new_s in last_index:
last_index[new_s].append(i)
else:
last_index[new_s] = [i]
# Checkpoint B
# Now yield up the answers.
def recur(new_target, max_i):
for i in last_index[new_target]:
if i == -1:
yield [] # Empty sum.
elif max_i <= i:
break # Not our solution.
else:
for answer in recur(new_target - array[i], i):
answer.append(array[i])
yield answer
for answer in recur(target, len(array)):
yield answer
这里有一个例子,它与数组和目标一起使用,在其他解决方案中使用的过滤方法实际上永远不会结束。
def is_prime(n):
for i in range(2, n):
if 0 == n % i:
return False
elif n < i * i:
return True
if n == 2:
return True
else:
return False
def primes(limit):
n = 2
while True:
if is_prime(n):
yield(n)
n = n + 1
if limit < n:
break
for answer in subset_sum_iter(primes(1000), 76000):
print(answer)
这将在2秒内打印所有522个答案。之前的方法如果能在宇宙当前的生命周期内找到答案,那就太幸运了。(整个空间有2^168 = 3.74144419156711e+50个可能的组合。那需要一段时间。)
解释 我被要求解释代码,但解释数据结构通常更能说明问题。我来解释一下数据结构。
让我们考虑subset_sum_iter([2, 2、3、3、5、5、7、7、-11、11),10)。
在检查点A,我们已经意识到我们的目标是正的,所以符号= 1。我们已经对输入进行了排序,使array =[-11, -7, -5, -3, -2, 2,3,5,7,11]。由于我们经常通过索引访问它,下面是从索引到值的映射:
0: -11
1: -7
2: -5
3: -3
4: -2
5: 2
6: 3
7: 5
8: 7
9: 11
通过检查点B,我们使用动态规划生成last_index数据结构。它包含什么?
last_index = {
-28: [4],
-26: [3, 5],
-25: [4, 6],
-24: [5],
-23: [2, 4, 5, 6, 7],
-22: [6],
-21: [3, 4, 5, 6, 7, 8],
-20: [4, 6, 7],
-19: [3, 5, 7, 8],
-18: [1, 4, 5, 6, 7, 8],
-17: [4, 5, 6, 7, 8, 9],
-16: [2, 4, 5, 6, 7, 8],
-15: [3, 5, 6, 7, 8, 9],
-14: [3, 4, 5, 6, 7, 8, 9],
-13: [4, 5, 6, 7, 8, 9],
-12: [2, 4, 5, 6, 7, 8, 9],
-11: [0, 5, 6, 7, 8, 9],
-10: [3, 4, 5, 6, 7, 8, 9],
-9: [4, 5, 6, 7, 8, 9],
-8: [3, 5, 6, 7, 8, 9],
-7: [1, 4, 5, 6, 7, 8, 9],
-6: [5, 6, 7, 8, 9],
-5: [2, 4, 5, 6, 7, 8, 9],
-4: [6, 7, 8, 9],
-3: [3, 5, 6, 7, 8, 9],
-2: [4, 6, 7, 8, 9],
-1: [5, 7, 8, 9],
0: [-1, 5, 6, 7, 8, 9],
1: [6, 7, 8, 9],
2: [5, 6, 7, 8, 9],
3: [6, 7, 8, 9],
4: [7, 8, 9],
5: [6, 7, 8, 9],
6: [7, 8, 9],
7: [7, 8, 9],
8: [7, 8, 9],
9: [8, 9],
10: [7, 8, 9]
}
(旁注,它不是对称的,因为条件if 0 < (new_s - target) *符号阻止我们记录超过target的任何内容,在我们的例子中是10。)
这是什么意思?以条目10为例:[7,8,9]。这意味着我们可以得到10的最终和,最后选择的数字在索引7、8或9处。也就是说,最后选择的数字可以是5,7或11。
让我们仔细看看如果我们选择索引7会发生什么。这意味着我们以5结束。因此,在得到下标7之前,我们必须得到10-5 = 5。5的条目为5:[6,7,8,9]。所以我们可以选择指数6,也就是3。虽然我们在第7、8和9处得到了5,但在第7号下标之前我们没有得到5。所以倒数第二个选项是指数6处的3。
现在我们要在下标6之前得到5-3 = 2。条目2是:2:[5,6,7,8,9]。同样,我们只关心下标5的答案因为其他的都发生得太晚了。所以倒数第三个选项是指数5处的2。
最后我们要在下标5之前得到2-2 = 0。条目0表示:0:[- 1,5,6,7,8,9]。同样,我们只关心-1。但是-1不是下标实际上我用它来表示我们已经完成了选择。
我们求出了2+3+5 = 10的解。这是我们打印出来的第一个解。
现在我们来看递归子函数。因为它是在main函数内部定义的,所以它可以看到last_index。
首先要注意的是,它调用的是yield,而不是return。这使它成为一个发电机。当你调用它时,你会返回一个特殊类型的迭代器。当你循环遍历那个迭代器时,你会得到一个它能产生的所有东西的列表。但你是在生成它们时得到它们的。如果它是一个很长的列表,你不把它放在内存中。(有点重要,因为我们可以得到一个很长的列表。)
recur(new_target, max_i)将产生的结果是你可以用数组中最大索引为max_i的元素求和为new_target的所有方法。这就是它的答案:“我们必须在索引max_i+1之前到达new_target。”当然,它是递归的。
因此,recur(target, len(array))是所有使用任意索引到达目标的解。这就是我们想要的。
这是R中的一个解
subset_sum = function(numbers,target,partial=0){
if(any(is.na(partial))) return()
s = sum(partial)
if(s == target) print(sprintf("sum(%s)=%s",paste(partial[-1],collapse="+"),target))
if(s > target) return()
for( i in seq_along(numbers)){
n = numbers[i]
remaining = numbers[(i+1):length(numbers)]
subset_sum(remaining,target,c(partial,n))
}
}
首先推导0。0是加法的一个恒等式所以在这个特殊情况下,它在单类定律下是没有用的。如果你想向上爬到一个正数,也可以推导出负数。否则还需要做减法运算。
所以…在这个特定的作业中,你能得到的最快算法如下所示。
函数items2T ([n,……ns), t) { Var c = ~~(t/n); 返回ns。长度呢?数组(c + 1) .fill () .reduce((r,_,i) => r.concat(items2T(ns, t-n*i)。map(s => Array(i).fill(n).concat(s))),[]) : t % n ?[] :[数组(c) .fill (n)); }; Var数据= [3,9,8,4,5,7,10], 结果; console.time(“组合”); result = items2T(data, 15); console.timeEnd(“组合”); console.log (JSON.stringify(结果));
这是一个非常快的算法,但如果你对数据数组进行降序排序,它会更快。使用.sort()是无关紧要的,因为算法最终会减少递归调用。