你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?
一个简单的例子:
要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345
你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?
一个简单的例子:
要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345
当前回答
到目前为止,有很多解决方案,但都是生成然后过滤的形式。这意味着他们可能会在递归路径上花费大量时间,而这些递归路径不会导致解决方案。
这里的解决方案是O(size_of_array * (number_of_sum + number_of_solutions))。换句话说,它使用动态规划来避免列举永远不会匹配的可能解决方案。
为了搞笑,我让这个函数同时使用正数和负数,并让它成为一个迭代器。它适用于Python 2.3+。
def subset_sum_iter(array, target):
sign = 1
array = sorted(array)
if target < 0:
array = reversed(array)
sign = -1
# Checkpoint A
last_index = {0: [-1]}
for i in range(len(array)):
for s in list(last_index.keys()):
new_s = s + array[i]
if 0 < (new_s - target) * sign:
pass # Cannot lead to target
elif new_s in last_index:
last_index[new_s].append(i)
else:
last_index[new_s] = [i]
# Checkpoint B
# Now yield up the answers.
def recur(new_target, max_i):
for i in last_index[new_target]:
if i == -1:
yield [] # Empty sum.
elif max_i <= i:
break # Not our solution.
else:
for answer in recur(new_target - array[i], i):
answer.append(array[i])
yield answer
for answer in recur(target, len(array)):
yield answer
这里有一个例子,它与数组和目标一起使用,在其他解决方案中使用的过滤方法实际上永远不会结束。
def is_prime(n):
for i in range(2, n):
if 0 == n % i:
return False
elif n < i * i:
return True
if n == 2:
return True
else:
return False
def primes(limit):
n = 2
while True:
if is_prime(n):
yield(n)
n = n + 1
if limit < n:
break
for answer in subset_sum_iter(primes(1000), 76000):
print(answer)
这将在2秒内打印所有522个答案。之前的方法如果能在宇宙当前的生命周期内找到答案,那就太幸运了。(整个空间有2^168 = 3.74144419156711e+50个可能的组合。那需要一段时间。)
解释 我被要求解释代码,但解释数据结构通常更能说明问题。我来解释一下数据结构。
让我们考虑subset_sum_iter([2, 2、3、3、5、5、7、7、-11、11),10)。
在检查点A,我们已经意识到我们的目标是正的,所以符号= 1。我们已经对输入进行了排序,使array =[-11, -7, -5, -3, -2, 2,3,5,7,11]。由于我们经常通过索引访问它,下面是从索引到值的映射:
0: -11
1: -7
2: -5
3: -3
4: -2
5: 2
6: 3
7: 5
8: 7
9: 11
通过检查点B,我们使用动态规划生成last_index数据结构。它包含什么?
last_index = {
-28: [4],
-26: [3, 5],
-25: [4, 6],
-24: [5],
-23: [2, 4, 5, 6, 7],
-22: [6],
-21: [3, 4, 5, 6, 7, 8],
-20: [4, 6, 7],
-19: [3, 5, 7, 8],
-18: [1, 4, 5, 6, 7, 8],
-17: [4, 5, 6, 7, 8, 9],
-16: [2, 4, 5, 6, 7, 8],
-15: [3, 5, 6, 7, 8, 9],
-14: [3, 4, 5, 6, 7, 8, 9],
-13: [4, 5, 6, 7, 8, 9],
-12: [2, 4, 5, 6, 7, 8, 9],
-11: [0, 5, 6, 7, 8, 9],
-10: [3, 4, 5, 6, 7, 8, 9],
-9: [4, 5, 6, 7, 8, 9],
-8: [3, 5, 6, 7, 8, 9],
-7: [1, 4, 5, 6, 7, 8, 9],
-6: [5, 6, 7, 8, 9],
-5: [2, 4, 5, 6, 7, 8, 9],
-4: [6, 7, 8, 9],
-3: [3, 5, 6, 7, 8, 9],
-2: [4, 6, 7, 8, 9],
-1: [5, 7, 8, 9],
0: [-1, 5, 6, 7, 8, 9],
1: [6, 7, 8, 9],
2: [5, 6, 7, 8, 9],
3: [6, 7, 8, 9],
4: [7, 8, 9],
5: [6, 7, 8, 9],
6: [7, 8, 9],
7: [7, 8, 9],
8: [7, 8, 9],
9: [8, 9],
10: [7, 8, 9]
}
(旁注,它不是对称的,因为条件if 0 < (new_s - target) *符号阻止我们记录超过target的任何内容,在我们的例子中是10。)
这是什么意思?以条目10为例:[7,8,9]。这意味着我们可以得到10的最终和,最后选择的数字在索引7、8或9处。也就是说,最后选择的数字可以是5,7或11。
让我们仔细看看如果我们选择索引7会发生什么。这意味着我们以5结束。因此,在得到下标7之前,我们必须得到10-5 = 5。5的条目为5:[6,7,8,9]。所以我们可以选择指数6,也就是3。虽然我们在第7、8和9处得到了5,但在第7号下标之前我们没有得到5。所以倒数第二个选项是指数6处的3。
现在我们要在下标6之前得到5-3 = 2。条目2是:2:[5,6,7,8,9]。同样,我们只关心下标5的答案因为其他的都发生得太晚了。所以倒数第三个选项是指数5处的2。
最后我们要在下标5之前得到2-2 = 0。条目0表示:0:[- 1,5,6,7,8,9]。同样,我们只关心-1。但是-1不是下标实际上我用它来表示我们已经完成了选择。
我们求出了2+3+5 = 10的解。这是我们打印出来的第一个解。
现在我们来看递归子函数。因为它是在main函数内部定义的,所以它可以看到last_index。
首先要注意的是,它调用的是yield,而不是return。这使它成为一个发电机。当你调用它时,你会返回一个特殊类型的迭代器。当你循环遍历那个迭代器时,你会得到一个它能产生的所有东西的列表。但你是在生成它们时得到它们的。如果它是一个很长的列表,你不把它放在内存中。(有点重要,因为我们可以得到一个很长的列表。)
recur(new_target, max_i)将产生的结果是你可以用数组中最大索引为max_i的元素求和为new_target的所有方法。这就是它的答案:“我们必须在索引max_i+1之前到达new_target。”当然,它是递归的。
因此,recur(target, len(array))是所有使用任意索引到达目标的解。这就是我们想要的。
其他回答
Java解决方案的Swift 3转换(by @JeremyThompson)
protocol _IntType { }
extension Int: _IntType {}
extension Array where Element: _IntType {
func subsets(to: Int) -> [[Element]]? {
func sum_up_recursive(_ numbers: [Element], _ target: Int, _ partial: [Element], _ solution: inout [[Element]]) {
var sum: Int = 0
for x in partial {
sum += x as! Int
}
if sum == target {
solution.append(partial)
}
guard sum < target else {
return
}
for i in stride(from: 0, to: numbers.count, by: 1) {
var remaining = [Element]()
for j in stride(from: i + 1, to: numbers.count, by: 1) {
remaining.append(numbers[j])
}
var partial_rec = [Element](partial)
partial_rec.append(numbers[i])
sum_up_recursive(remaining, target, partial_rec, &solution)
}
}
var solutions = [[Element]]()
sum_up_recursive(self, to, [Element](), &solutions)
return solutions.count > 0 ? solutions : nil
}
}
用法:
let numbers = [3, 9, 8, 4, 5, 7, 10]
if let solution = numbers.subsets(to: 15) {
print(solution) // output: [[3, 8, 4], [3, 5, 7], [8, 7], [5, 10]]
} else {
print("not possible")
}
这也可以用来打印所有的答案
public void recur(int[] a, int n, int sum, int[] ans, int ind) {
if (n < 0 && sum != 0)
return;
if (n < 0 && sum == 0) {
print(ans, ind);
return;
}
if (sum >= a[n]) {
ans[ind] = a[n];
recur(a, n - 1, sum - a[n], ans, ind + 1);
}
recur(a, n - 1, sum, ans, ind);
}
public void print(int[] a, int n) {
for (int i = 0; i < n; i++)
System.out.print(a[i] + " ");
System.out.println();
}
时间复杂度是指数级的。2^n的阶
@KeithBeller的回答略有变化的变量名称和一些评论。
public static void Main(string[] args)
{
List<int> input = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
int targetSum = 15;
SumUp(input, targetSum);
}
public static void SumUp(List<int> input, int targetSum)
{
SumUpRecursive(input, targetSum, new List<int>());
}
private static void SumUpRecursive(List<int> remaining, int targetSum, List<int> listToSum)
{
// Sum up partial
int sum = 0;
foreach (int x in listToSum)
sum += x;
//Check sum matched
if (sum == targetSum)
Console.WriteLine("sum(" + string.Join(",", listToSum.ToArray()) + ")=" + targetSum);
//Check sum passed
if (sum >= targetSum)
return;
//Iterate each input character
for (int i = 0; i < remaining.Count; i++)
{
//Build list of remaining items to iterate
List<int> newRemaining = new List<int>();
for (int j = i + 1; j < remaining.Count; j++)
newRemaining.Add(remaining[j]);
//Update partial list
List<int> newListToSum = new List<int>(listToSum);
int currentItem = remaining[i];
newListToSum.Add(currentItem);
SumUpRecursive(newRemaining, targetSum, newListToSum);
}
}'
function solve(n){
let DP = [];
DP[0] = DP[1] = DP[2] = 1;
DP[3] = 2;
for (let i = 4; i <= n; i++) {
DP[i] = DP[i-1] + DP[i-3] + DP[i-4];
}
return DP[n]
}
console.log(solve(5))
这是JS的一个动态解决方案,告诉任何人有多少种方法可以得到一定的总和。如果考虑到时间和空间的复杂性,这可能是正确的解决方案。
Javascript版本:
function subsetSum(numbers, target, partial) { var s, n, remaining; partial = partial || []; // sum partial s = partial.reduce(function (a, b) { return a + b; }, 0); // check if the partial sum is equals to target if (s === target) { console.log("%s=%s", partial.join("+"), target) } if (s >= target) { return; // if we reach the number why bother to continue } for (var i = 0; i < numbers.length; i++) { n = numbers[i]; remaining = numbers.slice(i + 1); subsetSum(remaining, target, partial.concat([n])); } } subsetSum([3,9,8,4,5,7,10],15); // output: // 3+8+4=15 // 3+5+7=15 // 8+7=15 // 5+10=15