你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?
一个简单的例子:
要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345
你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?
一个简单的例子:
要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345
当前回答
Perl版本(前导答案):
use strict;
sub subset_sum {
my ($numbers, $target, $result, $sum) = @_;
print 'sum('.join(',', @$result).") = $target\n" if $sum == $target;
return if $sum >= $target;
subset_sum([@$numbers[$_ + 1 .. $#$numbers]], $target,
[@{$result||[]}, $numbers->[$_]], $sum + $numbers->[$_])
for (0 .. $#$numbers);
}
subset_sum([3,9,8,4,5,7,10,6], 15);
结果:
sum(3,8,4) = 15
sum(3,5,7) = 15
sum(9,6) = 15
sum(8,7) = 15
sum(4,5,6) = 15
sum(5,10) = 15
Javascript版本:
const subsetSum = (numbers, target, partial = [], sum = 0) => { If (sum < target) 数字。forEach((num, i) => subsetSum(数字。Slice (i + 1), target, partial.concat([num]), sum + num)); Else if (sum == target) console.log(的总和(% s) = % s, partial.join(),目标); } subsetSum([3、9、8、4、5、7、10、6],15);
Javascript一行实际返回结果(而不是打印它):
const subsetSum = (n, t, p = [], s = 0, r = []) = > (s < t ? n.forEach ((l i) = > subsetSum (n.slice (i + 1), t,[……p、l], s + l r)): s = = t ? r.push (p): 0, r); console.log (subsetSum([3、9、8、4、5、7、10、6],15));
我最喜欢的是带有回调的一行语句:
const subsetSum = (n, t,辛西娅·布雷齐尔,p =黑铝,s = 0) = > s & lt; t ? n.forEach ((l, i) = > subsetSum (n.slice (i + 1)、t、辛西娅·布雷齐尔,黑... p, l铝,s + l)): s = = t ?辛西娅·布雷齐尔(p): 0; 子集([3,9,8,4,5,7,10,6],15,console.log);
其他回答
建议回答:
下面是一个使用es2015生成器的解决方案:
function* subsetSum(numbers, target, partial = [], partialSum = 0) {
if(partialSum === target) yield partial
if(partialSum >= target) return
for(let i = 0; i < numbers.length; i++){
const remaining = numbers.slice(i + 1)
, n = numbers[i]
yield* subsetSum(remaining, target, [...partial, n], partialSum + n)
}
}
使用生成器实际上非常有用,因为它允许您在找到有效子集时立即暂停脚本执行。这与没有生成器(即缺乏状态)的解决方案形成对比,后者必须遍历每个数字子集
这是R中的一个解
subset_sum = function(numbers,target,partial=0){
if(any(is.na(partial))) return()
s = sum(partial)
if(s == target) print(sprintf("sum(%s)=%s",paste(partial[-1],collapse="+"),target))
if(s > target) return()
for( i in seq_along(numbers)){
n = numbers[i]
remaining = numbers[(i+1):length(numbers)]
subset_sum(remaining,target,c(partial,n))
}
}
Javascript版本:
function subsetSum(numbers, target, partial) { var s, n, remaining; partial = partial || []; // sum partial s = partial.reduce(function (a, b) { return a + b; }, 0); // check if the partial sum is equals to target if (s === target) { console.log("%s=%s", partial.join("+"), target) } if (s >= target) { return; // if we reach the number why bother to continue } for (var i = 0; i < numbers.length; i++) { n = numbers[i]; remaining = numbers.slice(i + 1); subsetSum(remaining, target, partial.concat([n])); } } subsetSum([3,9,8,4,5,7,10],15); // output: // 3+8+4=15 // 3+5+7=15 // 8+7=15 // 5+10=15
我将c#示例移植到Objective-c,并没有在响应中看到它:
//Usage
NSMutableArray* numberList = [[NSMutableArray alloc] init];
NSMutableArray* partial = [[NSMutableArray alloc] init];
int target = 16;
for( int i = 1; i<target; i++ )
{ [numberList addObject:@(i)]; }
[self findSums:numberList target:target part:partial];
//*******************************************************************
// Finds combinations of numbers that add up to target recursively
//*******************************************************************
-(void)findSums:(NSMutableArray*)numbers target:(int)target part:(NSMutableArray*)partial
{
int s = 0;
for (NSNumber* x in partial)
{ s += [x intValue]; }
if (s == target)
{ NSLog(@"Sum[%@]", partial); }
if (s >= target)
{ return; }
for (int i = 0;i < [numbers count];i++ )
{
int n = [numbers[i] intValue];
NSMutableArray* remaining = [[NSMutableArray alloc] init];
for (int j = i + 1; j < [numbers count];j++)
{ [remaining addObject:@([numbers[j] intValue])]; }
NSMutableArray* partRec = [[NSMutableArray alloc] initWithArray:partial];
[partRec addObject:@(n)];
[self findSums:remaining target:target part:partRec];
}
}
c++版本的相同算法
#include <iostream>
#include <list>
void subset_sum_recursive(std::list<int> numbers, int target, std::list<int> partial)
{
int s = 0;
for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
{
s += *cit;
}
if(s == target)
{
std::cout << "sum([";
for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
{
std::cout << *cit << ",";
}
std::cout << "])=" << target << std::endl;
}
if(s >= target)
return;
int n;
for (std::list<int>::const_iterator ai = numbers.begin(); ai != numbers.end(); ai++)
{
n = *ai;
std::list<int> remaining;
for(std::list<int>::const_iterator aj = ai; aj != numbers.end(); aj++)
{
if(aj == ai)continue;
remaining.push_back(*aj);
}
std::list<int> partial_rec=partial;
partial_rec.push_back(n);
subset_sum_recursive(remaining,target,partial_rec);
}
}
void subset_sum(std::list<int> numbers,int target)
{
subset_sum_recursive(numbers,target,std::list<int>());
}
int main()
{
std::list<int> a;
a.push_back (3); a.push_back (9); a.push_back (8);
a.push_back (4);
a.push_back (5);
a.push_back (7);
a.push_back (10);
int n = 15;
//std::cin >> n;
subset_sum(a, n);
return 0;
}