你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?

一个简单的例子:

要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345


当前回答

我在做类似的scala作业。我想在这里发布我的解决方案:

 def countChange(money: Int, coins: List[Int]): Int = {
      def getCount(money: Int, remainingCoins: List[Int]): Int = {
        if(money == 0 ) 1
        else if(money < 0 || remainingCoins.isEmpty) 0
        else
          getCount(money, remainingCoins.tail) +
            getCount(money - remainingCoins.head, remainingCoins)
      }
      if(money == 0 || coins.isEmpty) 0
      else getCount(money, coins)
    }

其他回答

我想我应该用这个问题的答案,但我不能,所以这是我的答案。它使用的是《计算机程序的结构和解释》中答案的修改版本。我认为这是一个更好的递归解,应该更能取悦纯粹主义者。

我的答案是用Scala(如果我的Scala很烂,我很抱歉,我刚刚开始学习)。findsumcombination的疯狂之处在于对递归的原始列表进行排序和惟一,以防止欺骗。

def findSumCombinations(target: Int, numbers: List[Int]): Int = {
  cc(target, numbers.distinct.sortWith(_ < _), List())
}

def cc(target: Int, numbers: List[Int], solution: List[Int]): Int = {
  if (target == 0) {println(solution); 1 }
  else if (target < 0 || numbers.length == 0) 0
  else 
    cc(target, numbers.tail, solution) 
    + cc(target - numbers.head, numbers, numbers.head :: solution)
}

使用它:

 > findSumCombinations(12345, List(1,5,22,15,0,..))
 * Prints a whole heap of lists that will sum to the target *

另一个python解决方案是使用itertools.combination模块,如下所示:

#!/usr/local/bin/python

from itertools import combinations

def find_sum_in_list(numbers, target):
    results = []
    for x in range(len(numbers)):
        results.extend(
            [   
                combo for combo in combinations(numbers ,x)  
                    if sum(combo) == target
            ]   
        )   

    print results

if __name__ == "__main__":
    find_sum_in_list([3,9,8,4,5,7,10], 15)

输出:[(8,7),(5,10),(3,8,4),(3,5,7)]

这也可以用来打印所有的答案

public void recur(int[] a, int n, int sum, int[] ans, int ind) {
    if (n < 0 && sum != 0)
        return;
    if (n < 0 && sum == 0) {
        print(ans, ind);
        return;
    }
    if (sum >= a[n]) {
        ans[ind] = a[n];
        recur(a, n - 1, sum - a[n], ans, ind + 1);
    }
    recur(a, n - 1, sum, ans, ind);
}

public void print(int[] a, int n) {
    for (int i = 0; i < n; i++)
        System.out.print(a[i] + " ");
    System.out.println();
}

时间复杂度是指数级的。2^n的阶

下面是一个更好的版本,具有更好的输出格式和c++ 11特性:

void subset_sum_rec(std::vector<int> & nums, const int & target, std::vector<int> & partialNums) 
{
    int currentSum = std::accumulate(partialNums.begin(), partialNums.end(), 0);
    if (currentSum > target)
        return;
    if (currentSum == target) 
    {
        std::cout << "sum([";
        for (auto it = partialNums.begin(); it != std::prev(partialNums.end()); ++it)
            cout << *it << ",";
        cout << *std::prev(partialNums.end());
        std::cout << "])=" << target << std::endl;
    }
    for (auto it = nums.begin(); it != nums.end(); ++it) 
    {
        std::vector<int> remaining;
        for (auto it2 = std::next(it); it2 != nums.end(); ++it2)
            remaining.push_back(*it2);

        std::vector<int> partial = partialNums;
        partial.push_back(*it);
        subset_sum_rec(remaining, target, partial);
    }
}

这是R中的一个解

subset_sum = function(numbers,target,partial=0){
  if(any(is.na(partial))) return()
  s = sum(partial)
  if(s == target) print(sprintf("sum(%s)=%s",paste(partial[-1],collapse="+"),target))
  if(s > target) return()
  for( i in seq_along(numbers)){
    n = numbers[i]
    remaining = numbers[(i+1):length(numbers)]
    subset_sum(remaining,target,c(partial,n))
  }
}