你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?

一个简单的例子:

要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345


当前回答

@KeithBeller的回答略有变化的变量名称和一些评论。

    public static void Main(string[] args)
    {
        List<int> input = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
        int targetSum = 15;
        SumUp(input, targetSum);
    }

    public static void SumUp(List<int> input, int targetSum)
    {
        SumUpRecursive(input, targetSum, new List<int>());
    }

    private static void SumUpRecursive(List<int> remaining, int targetSum, List<int> listToSum)
    {
        // Sum up partial
        int sum = 0;
        foreach (int x in listToSum)
            sum += x;

        //Check sum matched
        if (sum == targetSum)
            Console.WriteLine("sum(" + string.Join(",", listToSum.ToArray()) + ")=" + targetSum);

        //Check sum passed
        if (sum >= targetSum)
            return;

        //Iterate each input character
        for (int i = 0; i < remaining.Count; i++)
        {
            //Build list of remaining items to iterate
            List<int> newRemaining = new List<int>();
            for (int j = i + 1; j < remaining.Count; j++)
                newRemaining.Add(remaining[j]);

            //Update partial list
            List<int> newListToSum = new List<int>(listToSum);
            int currentItem = remaining[i];
            newListToSum.Add(currentItem);
            SumUpRecursive(newRemaining, targetSum, newListToSum);
        }
    }'

其他回答

Excel VBA版本如下。我需要在VBA中实现这一点(不是我的偏好,不要评判我!),并使用本页上的答案作为方法。我上传以防其他人也需要VBA版本。

Option Explicit

Public Sub SumTarget()
    Dim numbers(0 To 6)  As Long
    Dim target As Long

    target = 15
    numbers(0) = 3: numbers(1) = 9: numbers(2) = 8: numbers(3) = 4: numbers(4) = 5
    numbers(5) = 7: numbers(6) = 10

    Call SumUpTarget(numbers, target)
End Sub

Public Sub SumUpTarget(numbers() As Long, target As Long)
    Dim part() As Long
    Call SumUpRecursive(numbers, target, part)
End Sub

Private Sub SumUpRecursive(numbers() As Long, target As Long, part() As Long)

    Dim s As Long, i As Long, j As Long, num As Long
    Dim remaining() As Long, partRec() As Long
    s = SumArray(part)

    If s = target Then Debug.Print "SUM ( " & ArrayToString(part) & " ) = " & target
    If s >= target Then Exit Sub

    If (Not Not numbers) <> 0 Then
        For i = 0 To UBound(numbers)
            Erase remaining()
            num = numbers(i)
            For j = i + 1 To UBound(numbers)
                AddToArray remaining, numbers(j)
            Next j
            Erase partRec()
            CopyArray partRec, part
            AddToArray partRec, num
            SumUpRecursive remaining, target, partRec
        Next i
    End If

End Sub

Private Function ArrayToString(x() As Long) As String
    Dim n As Long, result As String
    result = "{" & x(n)
    For n = LBound(x) + 1 To UBound(x)
        result = result & "," & x(n)
    Next n
    result = result & "}"
    ArrayToString = result
End Function

Private Function SumArray(x() As Long) As Long
    Dim n As Long
    SumArray = 0
    If (Not Not x) <> 0 Then
        For n = LBound(x) To UBound(x)
            SumArray = SumArray + x(n)
        Next n
    End If
End Function

Private Sub AddToArray(arr() As Long, x As Long)
    If (Not Not arr) <> 0 Then
        ReDim Preserve arr(0 To UBound(arr) + 1)
    Else
        ReDim Preserve arr(0 To 0)
    End If
    arr(UBound(arr)) = x
End Sub

Private Sub CopyArray(destination() As Long, source() As Long)
    Dim n As Long
    If (Not Not source) <> 0 Then
        For n = 0 To UBound(source)
                AddToArray destination, source(n)
        Next n
    End If
End Sub

输出(写入立即窗口)应该是:

SUM ( {3,8,4} ) = 15
SUM ( {3,5,7} ) = 15
SUM ( {8,7} ) = 15
SUM ( {5,10} ) = 15 

c#版本的@msalvadores代码的答案

void Main()
{
    int[] numbers = {3,9,8,4,5,7,10};
    int target = 15;
    sum_up(new List<int>(numbers.ToList()),target);
}

static void sum_up_recursive(List<int> numbers, int target, List<int> part)
{
   int s = 0;
   foreach (int x in part)
   {
       s += x;
   }
   if (s == target)
   {
        Console.WriteLine("sum(" + string.Join(",", part.Select(n => n.ToString()).ToArray()) + ")=" + target);
   }
   if (s >= target)
   {
        return;
   }
   for (int i = 0;i < numbers.Count;i++)
   {
         var remaining = new List<int>();
         int n = numbers[i];
         for (int j = i + 1; j < numbers.Count;j++)
         {
             remaining.Add(numbers[j]);
         }
         var part_rec = new List<int>(part);
         part_rec.Add(n);
         sum_up_recursive(remaining,target,part_rec);
   }
}
static void sum_up(List<int> numbers, int target)
{
    sum_up_recursive(numbers,target,new List<int>());
}
function solve(n){
    let DP = [];

     DP[0] = DP[1] = DP[2] = 1;
     DP[3] = 2;

    for (let i = 4; i <= n; i++) {
      DP[i] = DP[i-1] + DP[i-3] + DP[i-4];
    }
    return DP[n]
}

console.log(solve(5))

这是JS的一个动态解决方案,告诉任何人有多少种方法可以得到一定的总和。如果考虑到时间和空间的复杂性,这可能是正确的解决方案。

Java非递归版本,简单地添加元素并在可能的值之间重新分配它们。0被忽略,适用于固定的列表(给定的是您可以使用的)或可重复的数字列表。

import java.util.*;

public class TestCombinations {

    public static void main(String[] args) {
        ArrayList<Integer> numbers = new ArrayList<>(Arrays.asList(0, 1, 2, 2, 5, 10, 20));
        LinkedHashSet<Integer> targets = new LinkedHashSet<Integer>() {{
            add(4);
            add(10);
            add(25);
        }};

        System.out.println("## each element can appear as many times as needed");
        for (Integer target: targets) {
            Combinations combinations = new Combinations(numbers, target, true);
            combinations.calculateCombinations();
            for (String solution: combinations.getCombinations()) {
                System.out.println(solution);
            }
        }

        System.out.println("## each element can appear only once");
        for (Integer target: targets) {
            Combinations combinations = new Combinations(numbers, target, false);
            combinations.calculateCombinations();
            for (String solution: combinations.getCombinations()) {
                System.out.println(solution);
            }
        }
    }

    public static class Combinations {
        private boolean allowRepetitions;
        private int[] repetitions;
        private ArrayList<Integer> numbers;
        private Integer target;
        private Integer sum;
        private boolean hasNext;
        private Set<String> combinations;

        /**
         * Constructor.
         *
         * @param numbers Numbers that can be used to calculate the sum.
         * @param target  Target value for sum.
         */
        public Combinations(ArrayList<Integer> numbers, Integer target) {
            this(numbers, target, true);
        }

        /**
         * Constructor.
         *
         * @param numbers Numbers that can be used to calculate the sum.
         * @param target  Target value for sum.
         */
        public Combinations(ArrayList<Integer> numbers, Integer target, boolean allowRepetitions) {
            this.allowRepetitions = allowRepetitions;
            if (this.allowRepetitions) {
                Set<Integer> numbersSet = new HashSet<>(numbers);
                this.numbers = new ArrayList<>(numbersSet);
            } else {
                this.numbers = numbers;
            }
            this.numbers.removeAll(Arrays.asList(0));
            Collections.sort(this.numbers);

            this.target = target;
            this.repetitions = new int[this.numbers.size()];
            this.combinations = new LinkedHashSet<>();

            this.sum = 0;
            if (this.repetitions.length > 0)
                this.hasNext = true;
            else
                this.hasNext = false;
        }

        /**
         * Calculate and return the sum of the current combination.
         *
         * @return The sum.
         */
        private Integer calculateSum() {
            this.sum = 0;
            for (int i = 0; i < repetitions.length; ++i) {
                this.sum += repetitions[i] * numbers.get(i);
            }
            return this.sum;
        }

        /**
         * Redistribute picks when only one of each number is allowed in the sum.
         */
        private void redistribute() {
            for (int i = 1; i < this.repetitions.length; ++i) {
                if (this.repetitions[i - 1] > 1) {
                    this.repetitions[i - 1] = 0;
                    this.repetitions[i] += 1;
                }
            }
            if (this.repetitions[this.repetitions.length - 1] > 1)
                this.repetitions[this.repetitions.length - 1] = 0;
        }

        /**
         * Get the sum of the next combination. When 0 is returned, there's no other combinations to check.
         *
         * @return The sum.
         */
        private Integer next() {
            if (this.hasNext && this.repetitions.length > 0) {
                this.repetitions[0] += 1;
                if (!this.allowRepetitions)
                    this.redistribute();
                this.calculateSum();

                for (int i = 0; i < this.repetitions.length && this.sum != 0; ++i) {
                    if (this.sum > this.target) {
                        this.repetitions[i] = 0;
                        if (i + 1 < this.repetitions.length) {
                            this.repetitions[i + 1] += 1;
                            if (!this.allowRepetitions)
                                this.redistribute();
                        }
                        this.calculateSum();
                    }
                }

                if (this.sum.compareTo(0) == 0)
                    this.hasNext = false;
            }
            return this.sum;
        }

        /**
         * Calculate all combinations whose sum equals target.
         */
        public void calculateCombinations() {
            while (this.hasNext) {
                if (this.next().compareTo(target) == 0)
                    this.combinations.add(this.toString());
            }
        }

        /**
         * Return all combinations whose sum equals target.
         *
         * @return Combinations as a set of strings.
         */
        public Set<String> getCombinations() {
            return this.combinations;
        }

        @Override
        public String toString() {
            StringBuilder stringBuilder = new StringBuilder("" + sum + ": ");
            for (int i = 0; i < repetitions.length; ++i) {
                for (int j = 0; j < repetitions[i]; ++j) {
                    stringBuilder.append(numbers.get(i) + " ");
                }
            }
            return stringBuilder.toString();
        }
    }
}

样例输入:

numbers: 0, 1, 2, 2, 5, 10, 20
targets: 4, 10, 25

样例输出:

## each element can appear as many times as needed
4: 1 1 1 1 
4: 1 1 2 
4: 2 2 
10: 1 1 1 1 1 1 1 1 1 1 
10: 1 1 1 1 1 1 1 1 2 
10: 1 1 1 1 1 1 2 2 
10: 1 1 1 1 2 2 2 
10: 1 1 2 2 2 2 
10: 2 2 2 2 2 
10: 1 1 1 1 1 5 
10: 1 1 1 2 5 
10: 1 2 2 5 
10: 5 5 
10: 10 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 
25: 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 
25: 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 
25: 1 1 1 2 2 2 2 2 2 2 2 2 2 2 
25: 1 2 2 2 2 2 2 2 2 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 5 
25: 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 5 
25: 1 1 1 1 1 1 1 1 2 2 2 2 2 2 5 
25: 1 1 1 1 1 1 2 2 2 2 2 2 2 5 
25: 1 1 1 1 2 2 2 2 2 2 2 2 5 
25: 1 1 2 2 2 2 2 2 2 2 2 5 
25: 2 2 2 2 2 2 2 2 2 2 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5 5 
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 5 5 
25: 1 1 1 1 1 1 1 1 1 2 2 2 5 5 
25: 1 1 1 1 1 1 1 2 2 2 2 5 5 
25: 1 1 1 1 1 2 2 2 2 2 5 5 
25: 1 1 1 2 2 2 2 2 2 5 5 
25: 1 2 2 2 2 2 2 2 5 5 
25: 1 1 1 1 1 1 1 1 1 1 5 5 5 
25: 1 1 1 1 1 1 1 1 2 5 5 5 
25: 1 1 1 1 1 1 2 2 5 5 5 
25: 1 1 1 1 2 2 2 5 5 5 
25: 1 1 2 2 2 2 5 5 5 
25: 2 2 2 2 2 5 5 5 
25: 1 1 1 1 1 5 5 5 5 
25: 1 1 1 2 5 5 5 5 
25: 1 2 2 5 5 5 5 
25: 5 5 5 5 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 10 
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 10 
25: 1 1 1 1 1 1 1 1 1 2 2 2 10 
25: 1 1 1 1 1 1 1 2 2 2 2 10 
25: 1 1 1 1 1 2 2 2 2 2 10 
25: 1 1 1 2 2 2 2 2 2 10 
25: 1 2 2 2 2 2 2 2 10 
25: 1 1 1 1 1 1 1 1 1 1 5 10 
25: 1 1 1 1 1 1 1 1 2 5 10 
25: 1 1 1 1 1 1 2 2 5 10 
25: 1 1 1 1 2 2 2 5 10 
25: 1 1 2 2 2 2 5 10 
25: 2 2 2 2 2 5 10 
25: 1 1 1 1 1 5 5 10 
25: 1 1 1 2 5 5 10 
25: 1 2 2 5 5 10 
25: 5 5 5 10 
25: 1 1 1 1 1 10 10 
25: 1 1 1 2 10 10 
25: 1 2 2 10 10 
25: 5 10 10 
25: 1 1 1 1 1 20 
25: 1 1 1 2 20 
25: 1 2 2 20 
25: 5 20 
## each element can appear only once
4: 2 2 
10: 1 2 2 5 
10: 10 
25: 1 2 2 20 
25: 5 20

c++版本的相同算法

#include <iostream>
#include <list>
void subset_sum_recursive(std::list<int> numbers, int target, std::list<int> partial)
{
        int s = 0;
        for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
        {
            s += *cit;
        }
        if(s == target)
        {
                std::cout << "sum([";

                for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
                {
                    std::cout << *cit << ",";
                }
                std::cout << "])=" << target << std::endl;
        }
        if(s >= target)
            return;
        int n;
        for (std::list<int>::const_iterator ai = numbers.begin(); ai != numbers.end(); ai++)
        {
            n = *ai;
            std::list<int> remaining;
            for(std::list<int>::const_iterator aj = ai; aj != numbers.end(); aj++)
            {
                if(aj == ai)continue;
                remaining.push_back(*aj);
            }
            std::list<int> partial_rec=partial;
            partial_rec.push_back(n);
            subset_sum_recursive(remaining,target,partial_rec);

        }
}

void subset_sum(std::list<int> numbers,int target)
{
    subset_sum_recursive(numbers,target,std::list<int>());
}
int main()
{
    std::list<int> a;
    a.push_back (3); a.push_back (9); a.push_back (8);
    a.push_back (4);
    a.push_back (5);
    a.push_back (7);
    a.push_back (10);
    int n = 15;
    //std::cin >> n;
    subset_sum(a, n);
    return 0;
}