现在我在框架中有一个中心模块,它使用Python 2.6 multiprocessing模块生成多个进程。因为它使用多处理,所以有一个模块级的多处理感知日志,log = multiprocessing.get_logger()。根据文档,这个日志记录器(EDIT)没有进程共享锁,所以你不会在sys. exe中弄乱东西。Stderr(或任何文件句柄),让多个进程同时写入它。

我现在遇到的问题是框架中的其他模块不支持多处理。在我看来,我需要让这个中心模块上的所有依赖都使用多处理感知日志。这在框架内很烦人,更不用说对框架的所有客户端了。还有我想不到的选择吗?


解决这个问题的唯一方法是非侵入性的:

Spawn each worker process such that its log goes to a different file descriptor (to disk or to pipe.) Ideally, all log entries should be timestamped. Your controller process can then do one of the following: If using disk files: Coalesce the log files at the end of the run, sorted by timestamp If using pipes (recommended): Coalesce log entries on-the-fly from all pipes, into a central log file. (E.g., Periodically select from the pipes' file descriptors, perform merge-sort on the available log entries, and flush to centralized log. Repeat.)


只需将日志记录器的实例发布到某个地方。这样,其他模块和客户端就可以使用您的API来获取记录器,而不必导入multiprocessing。


其中一个替代方案是将多处理日志写入一个已知文件,并注册一个atexit处理程序来加入这些进程,并在stderr上读取它;但是,您无法通过这种方式获得stderr上输出消息的实时流。


然而,另一种选择可能是日志包中各种非基于文件的日志处理程序:

套接字处理程序 数据报处理程序 系统日志处理程序

(和其他人)

通过这种方式,您可以轻松地在某个地方创建一个日志守护进程,以便安全地对其进行写入并正确地处理结果。(例如,一个简单的套接字服务器,它只是解pickle消息并将其发送到自己的旋转文件处理程序。)

SyslogHandler也会为您处理这个问题。当然,您可以使用自己的syslog实例,而不是系统实例。


我刚刚写了一个我自己的日志处理程序,它只是通过管道将所有内容提供给父进程。我只测试了十分钟,但它似乎工作得很好。

(注意:这是硬编码到RotatingFileHandler,这是我自己的用例。)


更新:@javier现在将这种方法作为Pypi上可用的包来维护-参见Pypi上的multiprocessing-logging, github上的https://github.com/jruere/multiprocessing-logging


更新:实现!

现在它使用队列来正确地处理并发,并正确地从错误中恢复。现在,我已经在生产中使用了几个月了,下面的当前版本工作起来没有问题。

from logging.handlers import RotatingFileHandler
import multiprocessing, threading, logging, sys, traceback

class MultiProcessingLog(logging.Handler):
    def __init__(self, name, mode, maxsize, rotate):
        logging.Handler.__init__(self)

        self._handler = RotatingFileHandler(name, mode, maxsize, rotate)
        self.queue = multiprocessing.Queue(-1)

        t = threading.Thread(target=self.receive)
        t.daemon = True
        t.start()

    def setFormatter(self, fmt):
        logging.Handler.setFormatter(self, fmt)
        self._handler.setFormatter(fmt)

    def receive(self):
        while True:
            try:
                record = self.queue.get()
                self._handler.emit(record)
            except (KeyboardInterrupt, SystemExit):
                raise
            except EOFError:
                break
            except:
                traceback.print_exc(file=sys.stderr)

    def send(self, s):
        self.queue.put_nowait(s)

    def _format_record(self, record):
        # ensure that exc_info and args
        # have been stringified.  Removes any chance of
        # unpickleable things inside and possibly reduces
        # message size sent over the pipe
        if record.args:
            record.msg = record.msg % record.args
            record.args = None
        if record.exc_info:
            dummy = self.format(record)
            record.exc_info = None

        return record

    def emit(self, record):
        try:
            s = self._format_record(record)
            self.send(s)
        except (KeyboardInterrupt, SystemExit):
            raise
        except:
            self.handleError(record)

    def close(self):
        self._handler.close()
        logging.Handler.close(self)

我喜欢zzzeek的回答。我只会用管道代替队列,因为如果多个线程/进程使用相同的管道端来生成日志消息,它们将被混淆。


我也喜欢zzzeek的回答,但Andre是正确的,需要一个队列来防止乱码。我的运气还不错,但确实看到了乱码,这是意料之中的。实现它比我想象的要难,特别是在Windows上运行,在Windows上有一些关于全局变量和其他东西的额外限制(参见:如何在Windows上实现Python Multiprocessing ?)

但是,我终于让它工作了。这个例子可能并不完美,所以欢迎评论和建议。它也不支持设置格式化程序或根日志记录器以外的任何内容。基本上,您必须在每个池进程中用队列重新配置记录器,并在记录器上设置其他属性。

同样,欢迎提出任何关于如何使代码更好的建议。我当然还不知道所有的Python技巧:-)

import multiprocessing, logging, sys, re, os, StringIO, threading, time, Queue

class MultiProcessingLogHandler(logging.Handler):
    def __init__(self, handler, queue, child=False):
        logging.Handler.__init__(self)

        self._handler = handler
        self.queue = queue

        # we only want one of the loggers to be pulling from the queue.
        # If there is a way to do this without needing to be passed this
        # information, that would be great!
        if child == False:
            self.shutdown = False
            self.polltime = 1
            t = threading.Thread(target=self.receive)
            t.daemon = True
            t.start()

    def setFormatter(self, fmt):
        logging.Handler.setFormatter(self, fmt)
        self._handler.setFormatter(fmt)

    def receive(self):
        #print "receive on"
        while (self.shutdown == False) or (self.queue.empty() == False):
            # so we block for a short period of time so that we can
            # check for the shutdown cases.
            try:
                record = self.queue.get(True, self.polltime)
                self._handler.emit(record)
            except Queue.Empty, e:
                pass

    def send(self, s):
        # send just puts it in the queue for the server to retrieve
        self.queue.put(s)

    def _format_record(self, record):
        ei = record.exc_info
        if ei:
            dummy = self.format(record) # just to get traceback text into record.exc_text
            record.exc_info = None  # to avoid Unpickleable error

        return record

    def emit(self, record):
        try:
            s = self._format_record(record)
            self.send(s)
        except (KeyboardInterrupt, SystemExit):
            raise
        except:
            self.handleError(record)

    def close(self):
        time.sleep(self.polltime+1) # give some time for messages to enter the queue.
        self.shutdown = True
        time.sleep(self.polltime+1) # give some time for the server to time out and see the shutdown

    def __del__(self):
        self.close() # hopefully this aids in orderly shutdown when things are going poorly.

def f(x):
    # just a logging command...
    logging.critical('function number: ' + str(x))
    # to make some calls take longer than others, so the output is "jumbled" as real MP programs are.
    time.sleep(x % 3)

def initPool(queue, level):
    """
    This causes the logging module to be initialized with the necessary info
    in pool threads to work correctly.
    """
    logging.getLogger('').addHandler(MultiProcessingLogHandler(logging.StreamHandler(), queue, child=True))
    logging.getLogger('').setLevel(level)

if __name__ == '__main__':
    stream = StringIO.StringIO()
    logQueue = multiprocessing.Queue(100)
    handler= MultiProcessingLogHandler(logging.StreamHandler(stream), logQueue)
    logging.getLogger('').addHandler(handler)
    logging.getLogger('').setLevel(logging.DEBUG)

    logging.debug('starting main')

    # when bulding the pool on a Windows machine we also have to init the logger in all the instances with the queue and the level of logging.
    pool = multiprocessing.Pool(processes=10, initializer=initPool, initargs=[logQueue, logging.getLogger('').getEffectiveLevel()] ) # start worker processes
    pool.map(f, range(0,50))
    pool.close()

    logging.debug('done')
    logging.shutdown()
    print "stream output is:"
    print stream.getvalue()

其他线程的变体,它将日志记录和队列线程分开。

"""sample code for logging in subprocesses using multiprocessing

* Little handler magic - The main process uses loggers and handlers as normal.
* Only a simple handler is needed in the subprocess that feeds the queue.
* Original logger name from subprocess is preserved when logged in main
  process.
* As in the other implementations, a thread reads the queue and calls the
  handlers. Except in this implementation, the thread is defined outside of a
  handler, which makes the logger definitions simpler.
* Works with multiple handlers.  If the logger in the main process defines
  multiple handlers, they will all be fed records generated by the
  subprocesses loggers.

tested with Python 2.5 and 2.6 on Linux and Windows

"""

import os
import sys
import time
import traceback
import multiprocessing, threading, logging, sys

DEFAULT_LEVEL = logging.DEBUG

formatter = logging.Formatter("%(levelname)s: %(asctime)s - %(name)s - %(process)s - %(message)s")

class SubProcessLogHandler(logging.Handler):
    """handler used by subprocesses

    It simply puts items on a Queue for the main process to log.

    """

    def __init__(self, queue):
        logging.Handler.__init__(self)
        self.queue = queue

    def emit(self, record):
        self.queue.put(record)

class LogQueueReader(threading.Thread):
    """thread to write subprocesses log records to main process log

    This thread reads the records written by subprocesses and writes them to
    the handlers defined in the main process's handlers.

    """

    def __init__(self, queue):
        threading.Thread.__init__(self)
        self.queue = queue
        self.daemon = True

    def run(self):
        """read from the queue and write to the log handlers

        The logging documentation says logging is thread safe, so there
        shouldn't be contention between normal logging (from the main
        process) and this thread.

        Note that we're using the name of the original logger.

        """
        # Thanks Mike for the error checking code.
        while True:
            try:
                record = self.queue.get()
                # get the logger for this record
                logger = logging.getLogger(record.name)
                logger.callHandlers(record)
            except (KeyboardInterrupt, SystemExit):
                raise
            except EOFError:
                break
            except:
                traceback.print_exc(file=sys.stderr)

class LoggingProcess(multiprocessing.Process):

    def __init__(self, queue):
        multiprocessing.Process.__init__(self)
        self.queue = queue

    def _setupLogger(self):
        # create the logger to use.
        logger = logging.getLogger('test.subprocess')
        # The only handler desired is the SubProcessLogHandler.  If any others
        # exist, remove them. In this case, on Unix and Linux the StreamHandler
        # will be inherited.

        for handler in logger.handlers:
            # just a check for my sanity
            assert not isinstance(handler, SubProcessLogHandler)
            logger.removeHandler(handler)
        # add the handler
        handler = SubProcessLogHandler(self.queue)
        handler.setFormatter(formatter)
        logger.addHandler(handler)

        # On Windows, the level will not be inherited.  Also, we could just
        # set the level to log everything here and filter it in the main
        # process handlers.  For now, just set it from the global default.
        logger.setLevel(DEFAULT_LEVEL)
        self.logger = logger

    def run(self):
        self._setupLogger()
        logger = self.logger
        # and here goes the logging
        p = multiprocessing.current_process()
        logger.info('hello from process %s with pid %s' % (p.name, p.pid))


if __name__ == '__main__':
    # queue used by the subprocess loggers
    queue = multiprocessing.Queue()
    # Just a normal logger
    logger = logging.getLogger('test')
    handler = logging.StreamHandler()
    handler.setFormatter(formatter)
    logger.addHandler(handler)
    logger.setLevel(DEFAULT_LEVEL)
    logger.info('hello from the main process')
    # This thread will read from the subprocesses and write to the main log's
    # handlers.
    log_queue_reader = LogQueueReader(queue)
    log_queue_reader.start()
    # create the processes.
    for i in range(10):
        p = LoggingProcess(queue)
        p.start()
    # The way I read the multiprocessing warning about Queue, joining a
    # process before it has finished feeding the Queue can cause a deadlock.
    # Also, Queue.empty() is not realiable, so just make sure all processes
    # are finished.
    # active_children joins subprocesses when they're finished.
    while multiprocessing.active_children():
        time.sleep(.1)

我有一个解决方案,类似于ironhacker的,除了我使用日志。在我的一些代码中,我发现我需要在将异常传递回队列之前格式化它,因为回溯是不能pickle的:

class QueueHandler(logging.Handler):
    def __init__(self, queue):
        logging.Handler.__init__(self)
        self.queue = queue
    def emit(self, record):
        if record.exc_info:
            # can't pass exc_info across processes so just format now
            record.exc_text = self.formatException(record.exc_info)
            record.exc_info = None
        self.queue.put(record)
    def formatException(self, ei):
        sio = cStringIO.StringIO()
        traceback.print_exception(ei[0], ei[1], ei[2], None, sio)
        s = sio.getvalue()
        sio.close()
        if s[-1] == "\n":
            s = s[:-1]
        return s

通过使用处理程序,当前所有解决方案都与日志记录配置过于耦合。我的解决方案具有以下架构和功能:

您可以使用任何想要的日志记录配置 日志记录在守护进程线程中完成 使用上下文管理器安全关闭守护进程 与日志线程的通信是由多进程完成的。队列 在子进程中,日志记录。Logger(和已经定义的实例)被打补丁以将所有记录发送到队列 新:在发送到队列之前格式化回溯和消息,以防止pickle错误

带有使用示例和输出的代码可以在以下Gist中找到:https://gist.github.com/schlamar/7003737


如何将所有日志记录委托给另一个进程,从队列中读取所有日志条目?

LOG_QUEUE = multiprocessing.JoinableQueue()

class CentralLogger(multiprocessing.Process):
    def __init__(self, queue):
        multiprocessing.Process.__init__(self)
        self.queue = queue
        self.log = logger.getLogger('some_config')
        self.log.info("Started Central Logging process")

    def run(self):
        while True:
            log_level, message = self.queue.get()
            if log_level is None:
                self.log.info("Shutting down Central Logging process")
                break
            else:
                self.log.log(log_level, message)

central_logger_process = CentralLogger(LOG_QUEUE)
central_logger_process.start()

只需通过任何多进程机制甚至继承共享LOG_QUEUE,就可以很好地工作!


如果在日志模块中的锁、线程和fork的组合中出现死锁,则在错误报告6721中报告(另见相关SO问题)。

有一个小的解决方案张贴在这里。

但是,这只会修复日志记录中任何潜在的死锁。这并不能解决问题,事情可能会变得混乱。请参阅此处提供的其他答案。


QueueHandler在Python 3.2+中是原生的,并且正是这样做的。它很容易在以前的版本中复制。

Python文档有两个完整的示例:从多个进程记录到单个文件

对于那些使用Python < 3.2的人,只需将QueueHandler从https://gist.github.com/vsajip/591589复制到自己的代码中,或者导入logutils。

每个进程(包括父进程)将其日志记录放在Queue上,然后监听线程或进程(为每个进程提供了一个示例)拾取这些日志并将它们全部写入一个文件—没有损坏或乱码的风险。


下面是另一个简单的解决方案,适用于从谷歌到这里的其他人(比如我)。日志记录应该很简单!仅适用于3.2或更高版本。

import multiprocessing
import logging
from logging.handlers import QueueHandler, QueueListener
import time
import random


def f(i):
    time.sleep(random.uniform(.01, .05))
    logging.info('function called with {} in worker thread.'.format(i))
    time.sleep(random.uniform(.01, .05))
    return i


def worker_init(q):
    # all records from worker processes go to qh and then into q
    qh = QueueHandler(q)
    logger = logging.getLogger()
    logger.setLevel(logging.DEBUG)
    logger.addHandler(qh)


def logger_init():
    q = multiprocessing.Queue()
    # this is the handler for all log records
    handler = logging.StreamHandler()
    handler.setFormatter(logging.Formatter("%(levelname)s: %(asctime)s - %(process)s - %(message)s"))

    # ql gets records from the queue and sends them to the handler
    ql = QueueListener(q, handler)
    ql.start()

    logger = logging.getLogger()
    logger.setLevel(logging.DEBUG)
    # add the handler to the logger so records from this process are handled
    logger.addHandler(handler)

    return ql, q


def main():
    q_listener, q = logger_init()

    logging.info('hello from main thread')
    pool = multiprocessing.Pool(4, worker_init, [q])
    for result in pool.map(f, range(10)):
        pass
    pool.close()
    pool.join()
    q_listener.stop()

if __name__ == '__main__':
    main()

下面是一个可以在Windows环境下使用的类,需要ActivePython。 您还可以继承其他日志处理程序(StreamHandler等)。

class SyncronizedFileHandler(logging.FileHandler):
    MUTEX_NAME = 'logging_mutex'

    def __init__(self , *args , **kwargs):

        self.mutex = win32event.CreateMutex(None , False , self.MUTEX_NAME)
        return super(SyncronizedFileHandler , self ).__init__(*args , **kwargs)

    def emit(self, *args , **kwargs):
        try:
            win32event.WaitForSingleObject(self.mutex , win32event.INFINITE)
            ret = super(SyncronizedFileHandler , self ).emit(*args , **kwargs)
        finally:
            win32event.ReleaseMutex(self.mutex)
        return ret

下面是一个演示用法的例子:

import logging
import random , time , os , sys , datetime
from string import letters
import win32api , win32event
from multiprocessing import Pool

def f(i):
    time.sleep(random.randint(0,10) * 0.1)
    ch = random.choice(letters)
    logging.info( ch * 30)


def init_logging():
    '''
    initilize the loggers
    '''
    formatter = logging.Formatter("%(levelname)s - %(process)d - %(asctime)s - %(filename)s - %(lineno)d - %(message)s")
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    file_handler = SyncronizedFileHandler(sys.argv[1])
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(formatter)
    logger.addHandler(file_handler)

#must be called in the parent and in every worker process
init_logging() 

if __name__ == '__main__':
    #multiprocessing stuff
    pool = Pool(processes=10)
    imap_result = pool.imap(f , range(30))
    for i , _ in enumerate(imap_result):
        pass

下面是我简单的破解/变通方法…不是最全面的,但很容易修改,比我在写这篇文章之前找到的任何其他答案都更容易阅读和理解:

import logging
import multiprocessing

class FakeLogger(object):
    def __init__(self, q):
        self.q = q
    def info(self, item):
        self.q.put('INFO - {}'.format(item))
    def debug(self, item):
        self.q.put('DEBUG - {}'.format(item))
    def critical(self, item):
        self.q.put('CRITICAL - {}'.format(item))
    def warning(self, item):
        self.q.put('WARNING - {}'.format(item))

def some_other_func_that_gets_logger_and_logs(num):
    # notice the name get's discarded
    # of course you can easily add this to your FakeLogger class
    local_logger = logging.getLogger('local')
    local_logger.info('Hey I am logging this: {} and working on it to make this {}!'.format(num, num*2))
    local_logger.debug('hmm, something may need debugging here')
    return num*2

def func_to_parallelize(data_chunk):
    # unpack our args
    the_num, logger_q = data_chunk
    # since we're now in a new process, let's monkeypatch the logging module
    logging.getLogger = lambda name=None: FakeLogger(logger_q)
    # now do the actual work that happens to log stuff too
    new_num = some_other_func_that_gets_logger_and_logs(the_num)
    return (the_num, new_num)

if __name__ == '__main__':
    multiprocessing.freeze_support()
    m = multiprocessing.Manager()
    logger_q = m.Queue()
    # we have to pass our data to be parallel-processed
    # we also need to pass the Queue object so we can retrieve the logs
    parallelable_data = [(1, logger_q), (2, logger_q)]
    # set up a pool of processes so we can take advantage of multiple CPU cores
    pool_size = multiprocessing.cpu_count() * 2
    pool = multiprocessing.Pool(processes=pool_size, maxtasksperchild=4)
    worker_output = pool.map(func_to_parallelize, parallelable_data)
    pool.close() # no more tasks
    pool.join()  # wrap up current tasks
    # get the contents of our FakeLogger object
    while not logger_q.empty():
        print logger_q.get()
    print 'worker output contained: {}'.format(worker_output)

由于我们可以将多进程日志记录表示为多个发布者和一个订阅者(侦听器),因此使用ZeroMQ实现PUB-SUB消息传递确实是一种选择。

此外,PyZMQ模块(ZMQ的Python绑定)实现了PUBHandler,这是通过ZMQ发布日志消息的对象。酒吧的套接字。

在web上有一个解决方案,使用PyZMQ和PUBHandler从分布式应用程序集中记录日志,可以很容易地在本地使用多个发布进程。

formatters = {
    logging.DEBUG: logging.Formatter("[%(name)s] %(message)s"),
    logging.INFO: logging.Formatter("[%(name)s] %(message)s"),
    logging.WARN: logging.Formatter("[%(name)s] %(message)s"),
    logging.ERROR: logging.Formatter("[%(name)s] %(message)s"),
    logging.CRITICAL: logging.Formatter("[%(name)s] %(message)s")
}

# This one will be used by publishing processes
class PUBLogger:
    def __init__(self, host, port=config.PUBSUB_LOGGER_PORT):
        self._logger = logging.getLogger(__name__)
        self._logger.setLevel(logging.DEBUG)
        self.ctx = zmq.Context()
        self.pub = self.ctx.socket(zmq.PUB)
        self.pub.connect('tcp://{0}:{1}'.format(socket.gethostbyname(host), port))
        self._handler = PUBHandler(self.pub)
        self._handler.formatters = formatters
        self._logger.addHandler(self._handler)

    @property
    def logger(self):
        return self._logger

# This one will be used by listener process
class SUBLogger:
    def __init__(self, ip, output_dir="", port=config.PUBSUB_LOGGER_PORT):
        self.output_dir = output_dir
        self._logger = logging.getLogger()
        self._logger.setLevel(logging.DEBUG)

        self.ctx = zmq.Context()
        self._sub = self.ctx.socket(zmq.SUB)
        self._sub.bind('tcp://*:{1}'.format(ip, port))
        self._sub.setsockopt(zmq.SUBSCRIBE, "")

        handler = handlers.RotatingFileHandler(os.path.join(output_dir, "client_debug.log"), "w", 100 * 1024 * 1024, 10)
        handler.setLevel(logging.DEBUG)
        formatter = logging.Formatter("%(asctime)s;%(levelname)s - %(message)s")
        handler.setFormatter(formatter)
        self._logger.addHandler(handler)

  @property
  def sub(self):
      return self._sub

  @property
  def logger(self):
      return self._logger

#  And that's the way we actually run things:

# Listener process will forever listen on SUB socket for incoming messages
def run_sub_logger(ip, event):
    sub_logger = SUBLogger(ip)
    while not event.is_set():
        try:
            topic, message = sub_logger.sub.recv_multipart(flags=zmq.NOBLOCK)
            log_msg = getattr(logging, topic.lower())
            log_msg(message)
        except zmq.ZMQError as zmq_error:
            if zmq_error.errno == zmq.EAGAIN:
                pass


# Publisher processes loggers should be initialized as follows:

class Publisher:
    def __init__(self, stop_event, proc_id):
        self.stop_event = stop_event
        self.proc_id = proc_id
        self._logger = pub_logger.PUBLogger('127.0.0.1').logger

     def run(self):
         self._logger.info("{0} - Sending message".format(proc_id))

def run_worker(event, proc_id):
    worker = Publisher(event, proc_id)
    worker.run()

# Starting subscriber process so we won't loose publisher's messages
sub_logger_process = Process(target=run_sub_logger,
                                 args=('127.0.0.1'), stop_event,))
sub_logger_process.start()

#Starting publisher processes
for i in range(MAX_WORKERS_PER_CLIENT):
    processes.append(Process(target=run_worker,
                                 args=(stop_event, i,)))
for p in processes:
    p.start()

有一个很棒的套餐

包: https://pypi.python.org/pypi/multiprocessing-logging/

代码: https://github.com/jruere/multiprocessing-logging

安装:

pip install multiprocessing-logging

然后添加:

import multiprocessing_logging

# This enables logs inside process
multiprocessing_logging.install_mp_handler()

最简单的想法是:

获取当前进程的文件名和进程id。 设置一个[WatchedFileHandler][1]。这里将详细讨论此处理程序的原因,但简而言之,其他日志处理程序存在某些更糟糕的竞争条件。这个有最短的竞态条件窗口。 选择日志保存路径,例如“/var/log/…”


对于可能需要这个的人,我为multiprocessing_logging包写了一个装饰器,它将当前进程名添加到日志中,这样就可以清楚地看到谁记录了什么。

它还运行install_mp_handler(),因此在创建池之前运行它是没有用的。

这让我可以看到哪个工作人员创建了哪些日志消息。

下面是蓝图和示例:

import sys
import logging
from functools import wraps
import multiprocessing
import multiprocessing_logging

# Setup basic console logger as 'logger'
logger = logging.getLogger()
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(logging.Formatter(u'%(asctime)s :: %(levelname)s :: %(message)s'))
logger.setLevel(logging.DEBUG)
logger.addHandler(console_handler)


# Create a decorator for functions that are called via multiprocessing pools
def logs_mp_process_names(fn):
    class MultiProcessLogFilter(logging.Filter):
        def filter(self, record):
            try:
                process_name = multiprocessing.current_process().name
            except BaseException:
                process_name = __name__
            record.msg = f'{process_name} :: {record.msg}'
            return True

    multiprocessing_logging.install_mp_handler()
    f = MultiProcessLogFilter()

    # Wraps is needed here so apply / apply_async know the function name
    @wraps(fn)
    def wrapper(*args, **kwargs):
        logger.removeFilter(f)
        logger.addFilter(f)
        return fn(*args, **kwargs)

    return wrapper


# Create a test function and decorate it
@logs_mp_process_names
def test(argument):
    logger.info(f'test function called via: {argument}')


# You can also redefine undecored functions
def undecorated_function():
    logger.info('I am not decorated')


@logs_mp_process_names
def redecorated(*args, **kwargs):
    return undecorated_function(*args, **kwargs)


# Enjoy
if __name__ == '__main__':
    with multiprocessing.Pool() as mp_pool:
        # Also works with apply_async
        mp_pool.apply(test, ('mp pool',))
        mp_pool.apply(redecorated)
        logger.info('some main logs')
        test('main program')

到2020年,似乎有一种更简单的多处理日志记录方式。

这个函数将创建记录器。你可以在这里设置格式和你想要输出的位置(文件,stdout):

def create_logger():
    import multiprocessing, logging
    logger = multiprocessing.get_logger()
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter(\
        '[%(asctime)s| %(levelname)s| %(processName)s] %(message)s')
    handler = logging.FileHandler('logs/your_file_name.log')
    handler.setFormatter(formatter)

    # this bit will make sure you won't have 
    # duplicated messages in the output
    if not len(logger.handlers): 
        logger.addHandler(handler)
    return logger

在init中实例化记录器:

if __name__ == '__main__': 
    from multiprocessing import Pool
    logger = create_logger()
    logger.info('Starting pooling')
    p = Pool()
    # rest of the code

现在,你只需要在每个需要记录日志的函数中添加这个引用:

logger = create_logger()

并输出消息:

logger.info(f'My message from {something}')

希望这能有所帮助。


我建议使用logger_tt库:https://github.com/Dragon2fly/logger_tt

multiporcessing_logging库不能在我的macOSX上工作,而logger_tt可以。


concurrent-log-handler似乎完美地完成了这项工作。在Windows上测试。还支持POSIX系统。

主要思想

使用返回记录器的函数创建一个单独的文件。记录器必须为每个进程拥有ConcurrentRotatingFileHandler的新实例。示例函数get_logger()如下所示。 创建记录器是在流程初始化时完成的。对于多处理。进程的子类,它将意味着run()方法的开始。

详细说明

在这个例子中,我将使用下面的文件结构

.
│-- child.py        <-- For a child process
│-- logs.py         <-- For setting up the logs for the app
│-- main.py         <-- For a main process
│-- myapp.py        <-- For starting the app
│-- somemodule.py   <-- For an example, a "3rd party module using standard logging"

Code

子进程

# child.py 

import multiprocessing as mp
import time
from somemodule import do_something


class ChildProcess(mp.Process):
    def __init__(self):
        self.logger = None
        super().__init__()

    def run(self):
        from logs import get_logger
        self.logger = get_logger()


        while True:
            time.sleep(1)
            self.logger.info("Child process")
            do_something()

Simple child process that inherits multiprocessing.Process and simply logs to file text "Child process" Important: The get_logger() is called inside the run(), or elsewhere inside the child process (not module level or in __init__().) This is required as get_logger() creates ConcurrentRotatingFileHandler instance, and new instance is needed for each process. The do_something is used just to demonstrate that this works with 3rd party library code which does not have any clue that you are using concurrent-log-handler.

主要过程

# main.py

import logging
import multiprocessing as mp
import time

from child import ChildProcess
from somemodule import do_something


class MainProcess(mp.Process):
    def __init__(self):
        self.logger = logging.getLogger()
        super().__init__()

    def run(self):
        from logs import get_logger

        self.logger = get_logger()
        self.child = ChildProcess()
        self.child.daemon = True
        self.child.start()

        while True:
            time.sleep(0.5)
            self.logger.critical("Main process")
            do_something()


主进程,在第二个“主进程”中两次登录到文件。同样继承自multiprocessing.Process。 get_logger()和do_something()的注释与子进程相同。

日志设置

# logs.py

import logging
import os

from concurrent_log_handler import ConcurrentRotatingFileHandler

LOGLEVEL = logging.DEBUG


def get_logger():
    logger = logging.getLogger()

    if logger.handlers:
        return logger

    # Use an absolute path to prevent file rotation trouble.
    logfile = os.path.abspath("mylog.log")

    logger.setLevel(LOGLEVEL)

    # Rotate log after reaching 512K, keep 5 old copies.
    filehandler = ConcurrentRotatingFileHandler(
        logfile, mode="a", maxBytes=512 * 1024, backupCount=5, encoding="utf-8"
    )
    filehandler.setLevel(LOGLEVEL)

    # create also handler for displaying output in the stdout
    ch = logging.StreamHandler()
    ch.setLevel(LOGLEVEL)

    formatter = logging.Formatter(
        "%(asctime)s - %(module)s - %(levelname)s - %(message)s [Process: %(process)d, %(filename)s:%(funcName)s(%(lineno)d)]"
    )

    # add formatter to ch
    ch.setFormatter(formatter)
    filehandler.setFormatter(formatter)

    logger.addHandler(ch)
    logger.addHandler(filehandler)

    return logger

这使用了concurrent-log-handler包中的ConcurrentRotatingFileHandler。每个进程都需要一个新的ConcurrentRotatingFileHandler实例。 注意,ConcurrentRotatingFileHandler的所有参数在每个进程中都应该是相同的。

示例应用程序

# myapp.py 

if __name__ == "__main__":
    from main import MainProcess

    p = MainProcess()
    p.start()

这只是一个关于如何启动多进程应用程序的简单示例

第三方模块使用标准日志记录的例子

# somemodule.py 

import logging

logger = logging.getLogger("somemodule")

def do_something():
    logging.info("doing something")

只是一个简单的例子来测试来自第三方代码的记录器是否正常工作。

示例输出

2021-04-19 19:02:29,425 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:29,427 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
2021-04-19 19:02:29,929 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:29,931 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
2021-04-19 19:02:30,133 - child - INFO - Child process [Process: 76700, child.py:run(18)]
2021-04-19 19:02:30,137 - somemodule - INFO - doing something [Process: 76700, somemodule.py:do_something(7)]
2021-04-19 19:02:30,436 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:30,439 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
2021-04-19 19:02:30,944 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:30,946 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
2021-04-19 19:02:31,142 - child - INFO - Child process [Process: 76700, child.py:run(18)]
2021-04-19 19:02:31,145 - somemodule - INFO - doing something [Process: 76700, somemodule.py:do_something(7)]
2021-04-19 19:02:31,449 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:31,451 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]