现在我在框架中有一个中心模块,它使用Python 2.6 multiprocessing模块生成多个进程。因为它使用多处理,所以有一个模块级的多处理感知日志,log = multiprocessing.get_logger()。根据文档,这个日志记录器(EDIT)没有进程共享锁,所以你不会在sys. exe中弄乱东西。Stderr(或任何文件句柄),让多个进程同时写入它。

我现在遇到的问题是框架中的其他模块不支持多处理。在我看来,我需要让这个中心模块上的所有依赖都使用多处理感知日志。这在框架内很烦人,更不用说对框架的所有客户端了。还有我想不到的选择吗?


当前回答

如何将所有日志记录委托给另一个进程,从队列中读取所有日志条目?

LOG_QUEUE = multiprocessing.JoinableQueue()

class CentralLogger(multiprocessing.Process):
    def __init__(self, queue):
        multiprocessing.Process.__init__(self)
        self.queue = queue
        self.log = logger.getLogger('some_config')
        self.log.info("Started Central Logging process")

    def run(self):
        while True:
            log_level, message = self.queue.get()
            if log_level is None:
                self.log.info("Shutting down Central Logging process")
                break
            else:
                self.log.log(log_level, message)

central_logger_process = CentralLogger(LOG_QUEUE)
central_logger_process.start()

只需通过任何多进程机制甚至继承共享LOG_QUEUE,就可以很好地工作!

其他回答

下面是一个可以在Windows环境下使用的类,需要ActivePython。 您还可以继承其他日志处理程序(StreamHandler等)。

class SyncronizedFileHandler(logging.FileHandler):
    MUTEX_NAME = 'logging_mutex'

    def __init__(self , *args , **kwargs):

        self.mutex = win32event.CreateMutex(None , False , self.MUTEX_NAME)
        return super(SyncronizedFileHandler , self ).__init__(*args , **kwargs)

    def emit(self, *args , **kwargs):
        try:
            win32event.WaitForSingleObject(self.mutex , win32event.INFINITE)
            ret = super(SyncronizedFileHandler , self ).emit(*args , **kwargs)
        finally:
            win32event.ReleaseMutex(self.mutex)
        return ret

下面是一个演示用法的例子:

import logging
import random , time , os , sys , datetime
from string import letters
import win32api , win32event
from multiprocessing import Pool

def f(i):
    time.sleep(random.randint(0,10) * 0.1)
    ch = random.choice(letters)
    logging.info( ch * 30)


def init_logging():
    '''
    initilize the loggers
    '''
    formatter = logging.Formatter("%(levelname)s - %(process)d - %(asctime)s - %(filename)s - %(lineno)d - %(message)s")
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    file_handler = SyncronizedFileHandler(sys.argv[1])
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(formatter)
    logger.addHandler(file_handler)

#must be called in the parent and in every worker process
init_logging() 

if __name__ == '__main__':
    #multiprocessing stuff
    pool = Pool(processes=10)
    imap_result = pool.imap(f , range(30))
    for i , _ in enumerate(imap_result):
        pass

通过使用处理程序,当前所有解决方案都与日志记录配置过于耦合。我的解决方案具有以下架构和功能:

您可以使用任何想要的日志记录配置 日志记录在守护进程线程中完成 使用上下文管理器安全关闭守护进程 与日志线程的通信是由多进程完成的。队列 在子进程中,日志记录。Logger(和已经定义的实例)被打补丁以将所有记录发送到队列 新:在发送到队列之前格式化回溯和消息,以防止pickle错误

带有使用示例和输出的代码可以在以下Gist中找到:https://gist.github.com/schlamar/7003737

然而,另一种选择可能是日志包中各种非基于文件的日志处理程序:

套接字处理程序 数据报处理程序 系统日志处理程序

(和其他人)

通过这种方式,您可以轻松地在某个地方创建一个日志守护进程,以便安全地对其进行写入并正确地处理结果。(例如,一个简单的套接字服务器,它只是解pickle消息并将其发送到自己的旋转文件处理程序。)

SyslogHandler也会为您处理这个问题。当然,您可以使用自己的syslog实例,而不是系统实例。

如何将所有日志记录委托给另一个进程,从队列中读取所有日志条目?

LOG_QUEUE = multiprocessing.JoinableQueue()

class CentralLogger(multiprocessing.Process):
    def __init__(self, queue):
        multiprocessing.Process.__init__(self)
        self.queue = queue
        self.log = logger.getLogger('some_config')
        self.log.info("Started Central Logging process")

    def run(self):
        while True:
            log_level, message = self.queue.get()
            if log_level is None:
                self.log.info("Shutting down Central Logging process")
                break
            else:
                self.log.log(log_level, message)

central_logger_process = CentralLogger(LOG_QUEUE)
central_logger_process.start()

只需通过任何多进程机制甚至继承共享LOG_QUEUE,就可以很好地工作!

我建议使用logger_tt库:https://github.com/Dragon2fly/logger_tt

multiporcessing_logging库不能在我的macOSX上工作,而logger_tt可以。