现在我在框架中有一个中心模块,它使用Python 2.6 multiprocessing模块生成多个进程。因为它使用多处理,所以有一个模块级的多处理感知日志,log = multiprocessing.get_logger()。根据文档,这个日志记录器(EDIT)没有进程共享锁,所以你不会在sys. exe中弄乱东西。Stderr(或任何文件句柄),让多个进程同时写入它。

我现在遇到的问题是框架中的其他模块不支持多处理。在我看来,我需要让这个中心模块上的所有依赖都使用多处理感知日志。这在框架内很烦人,更不用说对框架的所有客户端了。还有我想不到的选择吗?


当前回答

如果在日志模块中的锁、线程和fork的组合中出现死锁,则在错误报告6721中报告(另见相关SO问题)。

有一个小的解决方案张贴在这里。

但是,这只会修复日志记录中任何潜在的死锁。这并不能解决问题,事情可能会变得混乱。请参阅此处提供的其他答案。

其他回答

我刚刚写了一个我自己的日志处理程序,它只是通过管道将所有内容提供给父进程。我只测试了十分钟,但它似乎工作得很好。

(注意:这是硬编码到RotatingFileHandler,这是我自己的用例。)


更新:@javier现在将这种方法作为Pypi上可用的包来维护-参见Pypi上的multiprocessing-logging, github上的https://github.com/jruere/multiprocessing-logging


更新:实现!

现在它使用队列来正确地处理并发,并正确地从错误中恢复。现在,我已经在生产中使用了几个月了,下面的当前版本工作起来没有问题。

from logging.handlers import RotatingFileHandler
import multiprocessing, threading, logging, sys, traceback

class MultiProcessingLog(logging.Handler):
    def __init__(self, name, mode, maxsize, rotate):
        logging.Handler.__init__(self)

        self._handler = RotatingFileHandler(name, mode, maxsize, rotate)
        self.queue = multiprocessing.Queue(-1)

        t = threading.Thread(target=self.receive)
        t.daemon = True
        t.start()

    def setFormatter(self, fmt):
        logging.Handler.setFormatter(self, fmt)
        self._handler.setFormatter(fmt)

    def receive(self):
        while True:
            try:
                record = self.queue.get()
                self._handler.emit(record)
            except (KeyboardInterrupt, SystemExit):
                raise
            except EOFError:
                break
            except:
                traceback.print_exc(file=sys.stderr)

    def send(self, s):
        self.queue.put_nowait(s)

    def _format_record(self, record):
        # ensure that exc_info and args
        # have been stringified.  Removes any chance of
        # unpickleable things inside and possibly reduces
        # message size sent over the pipe
        if record.args:
            record.msg = record.msg % record.args
            record.args = None
        if record.exc_info:
            dummy = self.format(record)
            record.exc_info = None

        return record

    def emit(self, record):
        try:
            s = self._format_record(record)
            self.send(s)
        except (KeyboardInterrupt, SystemExit):
            raise
        except:
            self.handleError(record)

    def close(self):
        self._handler.close()
        logging.Handler.close(self)

对于可能需要这个的人,我为multiprocessing_logging包写了一个装饰器,它将当前进程名添加到日志中,这样就可以清楚地看到谁记录了什么。

它还运行install_mp_handler(),因此在创建池之前运行它是没有用的。

这让我可以看到哪个工作人员创建了哪些日志消息。

下面是蓝图和示例:

import sys
import logging
from functools import wraps
import multiprocessing
import multiprocessing_logging

# Setup basic console logger as 'logger'
logger = logging.getLogger()
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(logging.Formatter(u'%(asctime)s :: %(levelname)s :: %(message)s'))
logger.setLevel(logging.DEBUG)
logger.addHandler(console_handler)


# Create a decorator for functions that are called via multiprocessing pools
def logs_mp_process_names(fn):
    class MultiProcessLogFilter(logging.Filter):
        def filter(self, record):
            try:
                process_name = multiprocessing.current_process().name
            except BaseException:
                process_name = __name__
            record.msg = f'{process_name} :: {record.msg}'
            return True

    multiprocessing_logging.install_mp_handler()
    f = MultiProcessLogFilter()

    # Wraps is needed here so apply / apply_async know the function name
    @wraps(fn)
    def wrapper(*args, **kwargs):
        logger.removeFilter(f)
        logger.addFilter(f)
        return fn(*args, **kwargs)

    return wrapper


# Create a test function and decorate it
@logs_mp_process_names
def test(argument):
    logger.info(f'test function called via: {argument}')


# You can also redefine undecored functions
def undecorated_function():
    logger.info('I am not decorated')


@logs_mp_process_names
def redecorated(*args, **kwargs):
    return undecorated_function(*args, **kwargs)


# Enjoy
if __name__ == '__main__':
    with multiprocessing.Pool() as mp_pool:
        # Also works with apply_async
        mp_pool.apply(test, ('mp pool',))
        mp_pool.apply(redecorated)
        logger.info('some main logs')
        test('main program')

如果在日志模块中的锁、线程和fork的组合中出现死锁,则在错误报告6721中报告(另见相关SO问题)。

有一个小的解决方案张贴在这里。

但是,这只会修复日志记录中任何潜在的死锁。这并不能解决问题,事情可能会变得混乱。请参阅此处提供的其他答案。

concurrent-log-handler似乎完美地完成了这项工作。在Windows上测试。还支持POSIX系统。

主要思想

使用返回记录器的函数创建一个单独的文件。记录器必须为每个进程拥有ConcurrentRotatingFileHandler的新实例。示例函数get_logger()如下所示。 创建记录器是在流程初始化时完成的。对于多处理。进程的子类,它将意味着run()方法的开始。

详细说明

在这个例子中,我将使用下面的文件结构

.
│-- child.py        <-- For a child process
│-- logs.py         <-- For setting up the logs for the app
│-- main.py         <-- For a main process
│-- myapp.py        <-- For starting the app
│-- somemodule.py   <-- For an example, a "3rd party module using standard logging"

Code

子进程

# child.py 

import multiprocessing as mp
import time
from somemodule import do_something


class ChildProcess(mp.Process):
    def __init__(self):
        self.logger = None
        super().__init__()

    def run(self):
        from logs import get_logger
        self.logger = get_logger()


        while True:
            time.sleep(1)
            self.logger.info("Child process")
            do_something()

Simple child process that inherits multiprocessing.Process and simply logs to file text "Child process" Important: The get_logger() is called inside the run(), or elsewhere inside the child process (not module level or in __init__().) This is required as get_logger() creates ConcurrentRotatingFileHandler instance, and new instance is needed for each process. The do_something is used just to demonstrate that this works with 3rd party library code which does not have any clue that you are using concurrent-log-handler.

主要过程

# main.py

import logging
import multiprocessing as mp
import time

from child import ChildProcess
from somemodule import do_something


class MainProcess(mp.Process):
    def __init__(self):
        self.logger = logging.getLogger()
        super().__init__()

    def run(self):
        from logs import get_logger

        self.logger = get_logger()
        self.child = ChildProcess()
        self.child.daemon = True
        self.child.start()

        while True:
            time.sleep(0.5)
            self.logger.critical("Main process")
            do_something()


主进程,在第二个“主进程”中两次登录到文件。同样继承自multiprocessing.Process。 get_logger()和do_something()的注释与子进程相同。

日志设置

# logs.py

import logging
import os

from concurrent_log_handler import ConcurrentRotatingFileHandler

LOGLEVEL = logging.DEBUG


def get_logger():
    logger = logging.getLogger()

    if logger.handlers:
        return logger

    # Use an absolute path to prevent file rotation trouble.
    logfile = os.path.abspath("mylog.log")

    logger.setLevel(LOGLEVEL)

    # Rotate log after reaching 512K, keep 5 old copies.
    filehandler = ConcurrentRotatingFileHandler(
        logfile, mode="a", maxBytes=512 * 1024, backupCount=5, encoding="utf-8"
    )
    filehandler.setLevel(LOGLEVEL)

    # create also handler for displaying output in the stdout
    ch = logging.StreamHandler()
    ch.setLevel(LOGLEVEL)

    formatter = logging.Formatter(
        "%(asctime)s - %(module)s - %(levelname)s - %(message)s [Process: %(process)d, %(filename)s:%(funcName)s(%(lineno)d)]"
    )

    # add formatter to ch
    ch.setFormatter(formatter)
    filehandler.setFormatter(formatter)

    logger.addHandler(ch)
    logger.addHandler(filehandler)

    return logger

这使用了concurrent-log-handler包中的ConcurrentRotatingFileHandler。每个进程都需要一个新的ConcurrentRotatingFileHandler实例。 注意,ConcurrentRotatingFileHandler的所有参数在每个进程中都应该是相同的。

示例应用程序

# myapp.py 

if __name__ == "__main__":
    from main import MainProcess

    p = MainProcess()
    p.start()

这只是一个关于如何启动多进程应用程序的简单示例

第三方模块使用标准日志记录的例子

# somemodule.py 

import logging

logger = logging.getLogger("somemodule")

def do_something():
    logging.info("doing something")

只是一个简单的例子来测试来自第三方代码的记录器是否正常工作。

示例输出

2021-04-19 19:02:29,425 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:29,427 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
2021-04-19 19:02:29,929 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:29,931 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
2021-04-19 19:02:30,133 - child - INFO - Child process [Process: 76700, child.py:run(18)]
2021-04-19 19:02:30,137 - somemodule - INFO - doing something [Process: 76700, somemodule.py:do_something(7)]
2021-04-19 19:02:30,436 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:30,439 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
2021-04-19 19:02:30,944 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:30,946 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
2021-04-19 19:02:31,142 - child - INFO - Child process [Process: 76700, child.py:run(18)]
2021-04-19 19:02:31,145 - somemodule - INFO - doing something [Process: 76700, somemodule.py:do_something(7)]
2021-04-19 19:02:31,449 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:31,451 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]

最简单的想法是:

获取当前进程的文件名和进程id。 设置一个[WatchedFileHandler][1]。这里将详细讨论此处理程序的原因,但简而言之,其他日志处理程序存在某些更糟糕的竞争条件。这个有最短的竞态条件窗口。 选择日志保存路径,例如“/var/log/…”