现在我在框架中有一个中心模块,它使用Python 2.6 multiprocessing模块生成多个进程。因为它使用多处理,所以有一个模块级的多处理感知日志,log = multiprocessing.get_logger()。根据文档,这个日志记录器(EDIT)没有进程共享锁,所以你不会在sys. exe中弄乱东西。Stderr(或任何文件句柄),让多个进程同时写入它。

我现在遇到的问题是框架中的其他模块不支持多处理。在我看来,我需要让这个中心模块上的所有依赖都使用多处理感知日志。这在框架内很烦人,更不用说对框架的所有客户端了。还有我想不到的选择吗?


当前回答

对于可能需要这个的人,我为multiprocessing_logging包写了一个装饰器,它将当前进程名添加到日志中,这样就可以清楚地看到谁记录了什么。

它还运行install_mp_handler(),因此在创建池之前运行它是没有用的。

这让我可以看到哪个工作人员创建了哪些日志消息。

下面是蓝图和示例:

import sys
import logging
from functools import wraps
import multiprocessing
import multiprocessing_logging

# Setup basic console logger as 'logger'
logger = logging.getLogger()
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(logging.Formatter(u'%(asctime)s :: %(levelname)s :: %(message)s'))
logger.setLevel(logging.DEBUG)
logger.addHandler(console_handler)


# Create a decorator for functions that are called via multiprocessing pools
def logs_mp_process_names(fn):
    class MultiProcessLogFilter(logging.Filter):
        def filter(self, record):
            try:
                process_name = multiprocessing.current_process().name
            except BaseException:
                process_name = __name__
            record.msg = f'{process_name} :: {record.msg}'
            return True

    multiprocessing_logging.install_mp_handler()
    f = MultiProcessLogFilter()

    # Wraps is needed here so apply / apply_async know the function name
    @wraps(fn)
    def wrapper(*args, **kwargs):
        logger.removeFilter(f)
        logger.addFilter(f)
        return fn(*args, **kwargs)

    return wrapper


# Create a test function and decorate it
@logs_mp_process_names
def test(argument):
    logger.info(f'test function called via: {argument}')


# You can also redefine undecored functions
def undecorated_function():
    logger.info('I am not decorated')


@logs_mp_process_names
def redecorated(*args, **kwargs):
    return undecorated_function(*args, **kwargs)


# Enjoy
if __name__ == '__main__':
    with multiprocessing.Pool() as mp_pool:
        # Also works with apply_async
        mp_pool.apply(test, ('mp pool',))
        mp_pool.apply(redecorated)
        logger.info('some main logs')
        test('main program')

其他回答

只需将日志记录器的实例发布到某个地方。这样,其他模块和客户端就可以使用您的API来获取记录器,而不必导入multiprocessing。

我刚刚写了一个我自己的日志处理程序,它只是通过管道将所有内容提供给父进程。我只测试了十分钟,但它似乎工作得很好。

(注意:这是硬编码到RotatingFileHandler,这是我自己的用例。)


更新:@javier现在将这种方法作为Pypi上可用的包来维护-参见Pypi上的multiprocessing-logging, github上的https://github.com/jruere/multiprocessing-logging


更新:实现!

现在它使用队列来正确地处理并发,并正确地从错误中恢复。现在,我已经在生产中使用了几个月了,下面的当前版本工作起来没有问题。

from logging.handlers import RotatingFileHandler
import multiprocessing, threading, logging, sys, traceback

class MultiProcessingLog(logging.Handler):
    def __init__(self, name, mode, maxsize, rotate):
        logging.Handler.__init__(self)

        self._handler = RotatingFileHandler(name, mode, maxsize, rotate)
        self.queue = multiprocessing.Queue(-1)

        t = threading.Thread(target=self.receive)
        t.daemon = True
        t.start()

    def setFormatter(self, fmt):
        logging.Handler.setFormatter(self, fmt)
        self._handler.setFormatter(fmt)

    def receive(self):
        while True:
            try:
                record = self.queue.get()
                self._handler.emit(record)
            except (KeyboardInterrupt, SystemExit):
                raise
            except EOFError:
                break
            except:
                traceback.print_exc(file=sys.stderr)

    def send(self, s):
        self.queue.put_nowait(s)

    def _format_record(self, record):
        # ensure that exc_info and args
        # have been stringified.  Removes any chance of
        # unpickleable things inside and possibly reduces
        # message size sent over the pipe
        if record.args:
            record.msg = record.msg % record.args
            record.args = None
        if record.exc_info:
            dummy = self.format(record)
            record.exc_info = None

        return record

    def emit(self, record):
        try:
            s = self._format_record(record)
            self.send(s)
        except (KeyboardInterrupt, SystemExit):
            raise
        except:
            self.handleError(record)

    def close(self):
        self._handler.close()
        logging.Handler.close(self)

我也喜欢zzzeek的回答,但Andre是正确的,需要一个队列来防止乱码。我的运气还不错,但确实看到了乱码,这是意料之中的。实现它比我想象的要难,特别是在Windows上运行,在Windows上有一些关于全局变量和其他东西的额外限制(参见:如何在Windows上实现Python Multiprocessing ?)

但是,我终于让它工作了。这个例子可能并不完美,所以欢迎评论和建议。它也不支持设置格式化程序或根日志记录器以外的任何内容。基本上,您必须在每个池进程中用队列重新配置记录器,并在记录器上设置其他属性。

同样,欢迎提出任何关于如何使代码更好的建议。我当然还不知道所有的Python技巧:-)

import multiprocessing, logging, sys, re, os, StringIO, threading, time, Queue

class MultiProcessingLogHandler(logging.Handler):
    def __init__(self, handler, queue, child=False):
        logging.Handler.__init__(self)

        self._handler = handler
        self.queue = queue

        # we only want one of the loggers to be pulling from the queue.
        # If there is a way to do this without needing to be passed this
        # information, that would be great!
        if child == False:
            self.shutdown = False
            self.polltime = 1
            t = threading.Thread(target=self.receive)
            t.daemon = True
            t.start()

    def setFormatter(self, fmt):
        logging.Handler.setFormatter(self, fmt)
        self._handler.setFormatter(fmt)

    def receive(self):
        #print "receive on"
        while (self.shutdown == False) or (self.queue.empty() == False):
            # so we block for a short period of time so that we can
            # check for the shutdown cases.
            try:
                record = self.queue.get(True, self.polltime)
                self._handler.emit(record)
            except Queue.Empty, e:
                pass

    def send(self, s):
        # send just puts it in the queue for the server to retrieve
        self.queue.put(s)

    def _format_record(self, record):
        ei = record.exc_info
        if ei:
            dummy = self.format(record) # just to get traceback text into record.exc_text
            record.exc_info = None  # to avoid Unpickleable error

        return record

    def emit(self, record):
        try:
            s = self._format_record(record)
            self.send(s)
        except (KeyboardInterrupt, SystemExit):
            raise
        except:
            self.handleError(record)

    def close(self):
        time.sleep(self.polltime+1) # give some time for messages to enter the queue.
        self.shutdown = True
        time.sleep(self.polltime+1) # give some time for the server to time out and see the shutdown

    def __del__(self):
        self.close() # hopefully this aids in orderly shutdown when things are going poorly.

def f(x):
    # just a logging command...
    logging.critical('function number: ' + str(x))
    # to make some calls take longer than others, so the output is "jumbled" as real MP programs are.
    time.sleep(x % 3)

def initPool(queue, level):
    """
    This causes the logging module to be initialized with the necessary info
    in pool threads to work correctly.
    """
    logging.getLogger('').addHandler(MultiProcessingLogHandler(logging.StreamHandler(), queue, child=True))
    logging.getLogger('').setLevel(level)

if __name__ == '__main__':
    stream = StringIO.StringIO()
    logQueue = multiprocessing.Queue(100)
    handler= MultiProcessingLogHandler(logging.StreamHandler(stream), logQueue)
    logging.getLogger('').addHandler(handler)
    logging.getLogger('').setLevel(logging.DEBUG)

    logging.debug('starting main')

    # when bulding the pool on a Windows machine we also have to init the logger in all the instances with the queue and the level of logging.
    pool = multiprocessing.Pool(processes=10, initializer=initPool, initargs=[logQueue, logging.getLogger('').getEffectiveLevel()] ) # start worker processes
    pool.map(f, range(0,50))
    pool.close()

    logging.debug('done')
    logging.shutdown()
    print "stream output is:"
    print stream.getvalue()

然而,另一种选择可能是日志包中各种非基于文件的日志处理程序:

套接字处理程序 数据报处理程序 系统日志处理程序

(和其他人)

通过这种方式,您可以轻松地在某个地方创建一个日志守护进程,以便安全地对其进行写入并正确地处理结果。(例如,一个简单的套接字服务器,它只是解pickle消息并将其发送到自己的旋转文件处理程序。)

SyslogHandler也会为您处理这个问题。当然,您可以使用自己的syslog实例,而不是系统实例。

对于可能需要这个的人,我为multiprocessing_logging包写了一个装饰器,它将当前进程名添加到日志中,这样就可以清楚地看到谁记录了什么。

它还运行install_mp_handler(),因此在创建池之前运行它是没有用的。

这让我可以看到哪个工作人员创建了哪些日志消息。

下面是蓝图和示例:

import sys
import logging
from functools import wraps
import multiprocessing
import multiprocessing_logging

# Setup basic console logger as 'logger'
logger = logging.getLogger()
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(logging.Formatter(u'%(asctime)s :: %(levelname)s :: %(message)s'))
logger.setLevel(logging.DEBUG)
logger.addHandler(console_handler)


# Create a decorator for functions that are called via multiprocessing pools
def logs_mp_process_names(fn):
    class MultiProcessLogFilter(logging.Filter):
        def filter(self, record):
            try:
                process_name = multiprocessing.current_process().name
            except BaseException:
                process_name = __name__
            record.msg = f'{process_name} :: {record.msg}'
            return True

    multiprocessing_logging.install_mp_handler()
    f = MultiProcessLogFilter()

    # Wraps is needed here so apply / apply_async know the function name
    @wraps(fn)
    def wrapper(*args, **kwargs):
        logger.removeFilter(f)
        logger.addFilter(f)
        return fn(*args, **kwargs)

    return wrapper


# Create a test function and decorate it
@logs_mp_process_names
def test(argument):
    logger.info(f'test function called via: {argument}')


# You can also redefine undecored functions
def undecorated_function():
    logger.info('I am not decorated')


@logs_mp_process_names
def redecorated(*args, **kwargs):
    return undecorated_function(*args, **kwargs)


# Enjoy
if __name__ == '__main__':
    with multiprocessing.Pool() as mp_pool:
        # Also works with apply_async
        mp_pool.apply(test, ('mp pool',))
        mp_pool.apply(redecorated)
        logger.info('some main logs')
        test('main program')