现在我在框架中有一个中心模块,它使用Python 2.6 multiprocessing模块生成多个进程。因为它使用多处理,所以有一个模块级的多处理感知日志,log = multiprocessing.get_logger()。根据文档,这个日志记录器(EDIT)没有进程共享锁,所以你不会在sys. exe中弄乱东西。Stderr(或任何文件句柄),让多个进程同时写入它。
我现在遇到的问题是框架中的其他模块不支持多处理。在我看来,我需要让这个中心模块上的所有依赖都使用多处理感知日志。这在框架内很烦人,更不用说对框架的所有客户端了。还有我想不到的选择吗?
下面是我简单的破解/变通方法…不是最全面的,但很容易修改,比我在写这篇文章之前找到的任何其他答案都更容易阅读和理解:
import logging
import multiprocessing
class FakeLogger(object):
def __init__(self, q):
self.q = q
def info(self, item):
self.q.put('INFO - {}'.format(item))
def debug(self, item):
self.q.put('DEBUG - {}'.format(item))
def critical(self, item):
self.q.put('CRITICAL - {}'.format(item))
def warning(self, item):
self.q.put('WARNING - {}'.format(item))
def some_other_func_that_gets_logger_and_logs(num):
# notice the name get's discarded
# of course you can easily add this to your FakeLogger class
local_logger = logging.getLogger('local')
local_logger.info('Hey I am logging this: {} and working on it to make this {}!'.format(num, num*2))
local_logger.debug('hmm, something may need debugging here')
return num*2
def func_to_parallelize(data_chunk):
# unpack our args
the_num, logger_q = data_chunk
# since we're now in a new process, let's monkeypatch the logging module
logging.getLogger = lambda name=None: FakeLogger(logger_q)
# now do the actual work that happens to log stuff too
new_num = some_other_func_that_gets_logger_and_logs(the_num)
return (the_num, new_num)
if __name__ == '__main__':
multiprocessing.freeze_support()
m = multiprocessing.Manager()
logger_q = m.Queue()
# we have to pass our data to be parallel-processed
# we also need to pass the Queue object so we can retrieve the logs
parallelable_data = [(1, logger_q), (2, logger_q)]
# set up a pool of processes so we can take advantage of multiple CPU cores
pool_size = multiprocessing.cpu_count() * 2
pool = multiprocessing.Pool(processes=pool_size, maxtasksperchild=4)
worker_output = pool.map(func_to_parallelize, parallelable_data)
pool.close() # no more tasks
pool.join() # wrap up current tasks
# get the contents of our FakeLogger object
while not logger_q.empty():
print logger_q.get()
print 'worker output contained: {}'.format(worker_output)
其他线程的变体,它将日志记录和队列线程分开。
"""sample code for logging in subprocesses using multiprocessing
* Little handler magic - The main process uses loggers and handlers as normal.
* Only a simple handler is needed in the subprocess that feeds the queue.
* Original logger name from subprocess is preserved when logged in main
process.
* As in the other implementations, a thread reads the queue and calls the
handlers. Except in this implementation, the thread is defined outside of a
handler, which makes the logger definitions simpler.
* Works with multiple handlers. If the logger in the main process defines
multiple handlers, they will all be fed records generated by the
subprocesses loggers.
tested with Python 2.5 and 2.6 on Linux and Windows
"""
import os
import sys
import time
import traceback
import multiprocessing, threading, logging, sys
DEFAULT_LEVEL = logging.DEBUG
formatter = logging.Formatter("%(levelname)s: %(asctime)s - %(name)s - %(process)s - %(message)s")
class SubProcessLogHandler(logging.Handler):
"""handler used by subprocesses
It simply puts items on a Queue for the main process to log.
"""
def __init__(self, queue):
logging.Handler.__init__(self)
self.queue = queue
def emit(self, record):
self.queue.put(record)
class LogQueueReader(threading.Thread):
"""thread to write subprocesses log records to main process log
This thread reads the records written by subprocesses and writes them to
the handlers defined in the main process's handlers.
"""
def __init__(self, queue):
threading.Thread.__init__(self)
self.queue = queue
self.daemon = True
def run(self):
"""read from the queue and write to the log handlers
The logging documentation says logging is thread safe, so there
shouldn't be contention between normal logging (from the main
process) and this thread.
Note that we're using the name of the original logger.
"""
# Thanks Mike for the error checking code.
while True:
try:
record = self.queue.get()
# get the logger for this record
logger = logging.getLogger(record.name)
logger.callHandlers(record)
except (KeyboardInterrupt, SystemExit):
raise
except EOFError:
break
except:
traceback.print_exc(file=sys.stderr)
class LoggingProcess(multiprocessing.Process):
def __init__(self, queue):
multiprocessing.Process.__init__(self)
self.queue = queue
def _setupLogger(self):
# create the logger to use.
logger = logging.getLogger('test.subprocess')
# The only handler desired is the SubProcessLogHandler. If any others
# exist, remove them. In this case, on Unix and Linux the StreamHandler
# will be inherited.
for handler in logger.handlers:
# just a check for my sanity
assert not isinstance(handler, SubProcessLogHandler)
logger.removeHandler(handler)
# add the handler
handler = SubProcessLogHandler(self.queue)
handler.setFormatter(formatter)
logger.addHandler(handler)
# On Windows, the level will not be inherited. Also, we could just
# set the level to log everything here and filter it in the main
# process handlers. For now, just set it from the global default.
logger.setLevel(DEFAULT_LEVEL)
self.logger = logger
def run(self):
self._setupLogger()
logger = self.logger
# and here goes the logging
p = multiprocessing.current_process()
logger.info('hello from process %s with pid %s' % (p.name, p.pid))
if __name__ == '__main__':
# queue used by the subprocess loggers
queue = multiprocessing.Queue()
# Just a normal logger
logger = logging.getLogger('test')
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(DEFAULT_LEVEL)
logger.info('hello from the main process')
# This thread will read from the subprocesses and write to the main log's
# handlers.
log_queue_reader = LogQueueReader(queue)
log_queue_reader.start()
# create the processes.
for i in range(10):
p = LoggingProcess(queue)
p.start()
# The way I read the multiprocessing warning about Queue, joining a
# process before it has finished feeding the Queue can cause a deadlock.
# Also, Queue.empty() is not realiable, so just make sure all processes
# are finished.
# active_children joins subprocesses when they're finished.
while multiprocessing.active_children():
time.sleep(.1)
对于可能需要这个的人,我为multiprocessing_logging包写了一个装饰器,它将当前进程名添加到日志中,这样就可以清楚地看到谁记录了什么。
它还运行install_mp_handler(),因此在创建池之前运行它是没有用的。
这让我可以看到哪个工作人员创建了哪些日志消息。
下面是蓝图和示例:
import sys
import logging
from functools import wraps
import multiprocessing
import multiprocessing_logging
# Setup basic console logger as 'logger'
logger = logging.getLogger()
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(logging.Formatter(u'%(asctime)s :: %(levelname)s :: %(message)s'))
logger.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
# Create a decorator for functions that are called via multiprocessing pools
def logs_mp_process_names(fn):
class MultiProcessLogFilter(logging.Filter):
def filter(self, record):
try:
process_name = multiprocessing.current_process().name
except BaseException:
process_name = __name__
record.msg = f'{process_name} :: {record.msg}'
return True
multiprocessing_logging.install_mp_handler()
f = MultiProcessLogFilter()
# Wraps is needed here so apply / apply_async know the function name
@wraps(fn)
def wrapper(*args, **kwargs):
logger.removeFilter(f)
logger.addFilter(f)
return fn(*args, **kwargs)
return wrapper
# Create a test function and decorate it
@logs_mp_process_names
def test(argument):
logger.info(f'test function called via: {argument}')
# You can also redefine undecored functions
def undecorated_function():
logger.info('I am not decorated')
@logs_mp_process_names
def redecorated(*args, **kwargs):
return undecorated_function(*args, **kwargs)
# Enjoy
if __name__ == '__main__':
with multiprocessing.Pool() as mp_pool:
# Also works with apply_async
mp_pool.apply(test, ('mp pool',))
mp_pool.apply(redecorated)
logger.info('some main logs')
test('main program')