现在我在框架中有一个中心模块,它使用Python 2.6 multiprocessing模块生成多个进程。因为它使用多处理,所以有一个模块级的多处理感知日志,log = multiprocessing.get_logger()。根据文档,这个日志记录器(EDIT)没有进程共享锁,所以你不会在sys. exe中弄乱东西。Stderr(或任何文件句柄),让多个进程同时写入它。

我现在遇到的问题是框架中的其他模块不支持多处理。在我看来,我需要让这个中心模块上的所有依赖都使用多处理感知日志。这在框架内很烦人,更不用说对框架的所有客户端了。还有我想不到的选择吗?


当前回答

解决这个问题的唯一方法是非侵入性的:

Spawn each worker process such that its log goes to a different file descriptor (to disk or to pipe.) Ideally, all log entries should be timestamped. Your controller process can then do one of the following: If using disk files: Coalesce the log files at the end of the run, sorted by timestamp If using pipes (recommended): Coalesce log entries on-the-fly from all pipes, into a central log file. (E.g., Periodically select from the pipes' file descriptors, perform merge-sort on the available log entries, and flush to centralized log. Repeat.)

其他回答

我喜欢zzzeek的回答。我只会用管道代替队列,因为如果多个线程/进程使用相同的管道端来生成日志消息,它们将被混淆。

然而,另一种选择可能是日志包中各种非基于文件的日志处理程序:

套接字处理程序 数据报处理程序 系统日志处理程序

(和其他人)

通过这种方式,您可以轻松地在某个地方创建一个日志守护进程,以便安全地对其进行写入并正确地处理结果。(例如,一个简单的套接字服务器,它只是解pickle消息并将其发送到自己的旋转文件处理程序。)

SyslogHandler也会为您处理这个问题。当然,您可以使用自己的syslog实例,而不是系统实例。

其中一个替代方案是将多处理日志写入一个已知文件,并注册一个atexit处理程序来加入这些进程,并在stderr上读取它;但是,您无法通过这种方式获得stderr上输出消息的实时流。

下面是另一个简单的解决方案,适用于从谷歌到这里的其他人(比如我)。日志记录应该很简单!仅适用于3.2或更高版本。

import multiprocessing
import logging
from logging.handlers import QueueHandler, QueueListener
import time
import random


def f(i):
    time.sleep(random.uniform(.01, .05))
    logging.info('function called with {} in worker thread.'.format(i))
    time.sleep(random.uniform(.01, .05))
    return i


def worker_init(q):
    # all records from worker processes go to qh and then into q
    qh = QueueHandler(q)
    logger = logging.getLogger()
    logger.setLevel(logging.DEBUG)
    logger.addHandler(qh)


def logger_init():
    q = multiprocessing.Queue()
    # this is the handler for all log records
    handler = logging.StreamHandler()
    handler.setFormatter(logging.Formatter("%(levelname)s: %(asctime)s - %(process)s - %(message)s"))

    # ql gets records from the queue and sends them to the handler
    ql = QueueListener(q, handler)
    ql.start()

    logger = logging.getLogger()
    logger.setLevel(logging.DEBUG)
    # add the handler to the logger so records from this process are handled
    logger.addHandler(handler)

    return ql, q


def main():
    q_listener, q = logger_init()

    logging.info('hello from main thread')
    pool = multiprocessing.Pool(4, worker_init, [q])
    for result in pool.map(f, range(10)):
        pass
    pool.close()
    pool.join()
    q_listener.stop()

if __name__ == '__main__':
    main()

只需将日志记录器的实例发布到某个地方。这样,其他模块和客户端就可以使用您的API来获取记录器,而不必导入multiprocessing。