我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

到目前为止,这里还没有提到一个相当狡猾的技巧。我们假设您没有额外的方法来存储数据,但严格来说这并不正确。

解决问题的一种方法是做以下可怕的事情,任何人在任何情况下都不应该尝试:使用网络流量存储数据。不,我指的不是NAS。

你可以用以下方法对只有几个字节内存的数字进行排序:

首先取两个变量:COUNTER和VALUE。 首先将所有寄存器设置为0; 每次你收到一个整数I,增加COUNTER并将VALUE设置为max(VALUE, I); 然后向路由器发送数据集为I的ICMP echo请求报文。擦掉I,重复。 每次收到返回的ICMP包时,只需提取整数并在另一个回显请求中再次发送出去。这将产生大量的ICMP请求,其中包含整数。

Once COUNTER reaches 1000000, you have all of the values stored in the incessant stream of ICMP requests, and VALUE now contains the maximum integer. Pick some threshold T >> 1000000. Set COUNTER to zero. Every time you receive an ICMP packet, increment COUNTER and send the contained integer I back out in another echo request, unless I=VALUE, in which case transmit it to the destination for the sorted integers. Once COUNTER=T, decrement VALUE by 1, reset COUNTER to zero and repeat. Once VALUE reaches zero you should have transmitted all integers in order from largest to smallest to the destination, and have only used about 47 bits of RAM for the two persistent variables (and whatever small amount you need for the temporary values).

我知道这很可怕,我知道可能会有各种各样的实际问题,但我想这可能会让你们中的一些人发笑,或者至少会吓到你们。

其他回答

(我原来的答案是错误的,对不起,数学不好,见下面的休息。)

这个怎么样?

前27位存储您所看到的最小数字,然后是与下一个数字的差值,编码如下:5位存储用于存储差值的位数,然后是差值。使用00000表示您再次看到了该数字。

这是因为插入的数字越多,数字之间的平均差值就越小,所以当你添加更多的数字时,你用更少的比特来存储差值。我想这叫做增量表。

我能想到的最糟糕的情况是所有数字都等距(以100为间隔),例如假设0是第一个数字:

000000000000000000000000000 00111 1100100
                            ^^^^^^^^^^^^^
                            a million times

27 + 1,000,000 * (5+7) bits = ~ 427k

Reddit来拯救你!

如果你要做的只是把它们排序,这个问题就简单了。它需要122k(100万比特)来存储你看到的数字(如果看到0,则第0位,如果看到2300,则第2300位,等等。

读取数字,将它们存储在位域中,然后在保持计数的同时将位移出。

但是,你必须记住你看过多少。我受到上面的子列表答案的启发,想出了这个方案:

用2位或27位代替1位:

00表示你没有看到这个数字。 01表示你看过一次 1表示你看过,接下来的26位是看了多少次。

我认为这是可行的:如果没有重复,你就有一个244k的列表。 在最坏的情况下,你看到每个数字两次(如果你看到一个数字三次,它会缩短列表的其余部分),这意味着你不止一次看到了50,000个,你0次或1次看到了950,000个项目。

50,000 * 27 + 950,000 * 2 = 396.7k.

如果你使用以下编码,你可以做进一步的改进:

0表示你没有看到这个数字 10表示你看过一次 11是你计数的方式

这将导致平均280.7k的存储空间。

编辑:我周日早上的数学算错了。

最坏的情况是,我们两次看到50万个数字,所以数学就变成了:

500,000 *27 + 500,000 *2 = 1.77M

交替编码导致平均存储为

500,000 * 27 + 500,000 = 1.70M

: (

排序在这里是次要问题。正如其他人所说,仅仅存储整数是困难的,并且不能在所有输入上工作,因为每个数字需要27位。

我对此的看法是:只存储连续(排序)整数之间的差异,因为它们很可能很小。然后使用压缩方案,例如,每个输入数字增加2位,来编码数字存储在多少位上。 喜欢的东西:

00 -> 5 bits
01 -> 11 bits
10 -> 19 bits
11 -> 27 bits

在给定的内存限制内,应该能够存储相当数量的可能输入列表。如何选择压缩方案以使其在最大输入数量上工作的数学超出了我的范围。

我希望您能够利用输入的领域特定知识,在此基础上找到足够好的整数压缩方案。

哦,然后,当你收到数据时,你对那个排序的列表进行插入排序。

我想试试基数树。如果可以将数据存储在树中,那么就可以执行顺序遍历来传输数据。

我不确定你是否能把它装进1MB,但我认为值得一试。

在所有可能的输入中,这个问题只有一个解决方案。作弊。

通过TCP读取m个值,其中m接近内存中可排序的最大值,可能是n/4。 对250,000(大约)个数字进行排序并输出。 重复做另外3个四分之三。 让接收方在处理时合并接收到的4个数字列表。(这并不比使用单个列表慢多少。)

To represent the sorted array one can just store the first element and the difference between adjacent elements. In this way we are concerned with encoding 10^6 elements that can sum up to at most 10^8. Let's call this D. To encode the elements of D one can use a Huffman code. The dictionary for the Huffman code can be created on the go and the array updated every time a new item is inserted in the sorted array (insertion sort). Note that when the dictionary changes because of a new item the whole array should be updated to match the new encoding.

如果每个唯一元素的数量相等,则编码D中每个元素的平均比特数将最大化。比如元素d1 d2…, dN在D中各出现F次。在这种情况下(最坏的情况是输入序列中同时有0和10^8)我们有

sum(1<=i<=N) F. di = 10^8

在哪里

sum(1<=i<=N) F=10^6,或F=10^6/N,归一化频率将是p= F/10^=1/N

平均比特数为-log2(1/P) = log2(N)。在这种情况下,我们应该找到使n最大化的情况,这发生在di从0开始的连续数,或者di= i-1时

10 ^ 8 =(1 < =我< = N) f . di =(1 < =我< = N) (10 ^ 6 / N)(张)= (10 ^ 6 / N) N (N - 1) / 2

i.e.

N <= 201。在这种情况下,平均比特数是log2(201)=7.6511,这意味着我们将需要大约1字节的每个输入元素来保存排序的数组。注意,这并不意味着D一般不能有超过201个元素。它只是说明,如果D的元素是均匀分布的,那么D的唯一值不可能超过201个。