我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

Gilmanov的答案在假设上是非常错误的。它开始基于毫无意义的一百万个连续整数进行推测。这意味着没有差距。这些随机的间隙,不管有多小,真的是一个糟糕的主意。

你自己试试。获得100万个27位随机整数,对它们排序,用7-Zip, xz压缩,任何你想要的LZMA。结果超过1.5 MB。上面的前提是连续数字的压缩。即使是增量编码也超过1.1 MB。没关系,这使用了超过100 MB的RAM进行压缩。因此,即使压缩的整数也不适合这个问题,更不用说运行时RAM的使用了。

让我难过的是,人们竟然投票支持漂亮的图像和合理化。

#include <stdint.h>
#include <stdlib.h>
#include <time.h>

int32_t ints[1000000]; // Random 27-bit integers

int cmpi32(const void *a, const void *b) {
    return ( *(int32_t *)a - *(int32_t *)b );
}

int main() {
    int32_t *pi = ints; // Pointer to input ints (REPLACE W/ read from net)

    // Fill pseudo-random integers of 27 bits
    srand(time(NULL));
    for (int i = 0; i < 1000000; i++)
        ints[i] = rand() & ((1<<27) - 1); // Random 32 bits masked to 27 bits

    qsort(ints, 1000000, sizeof (ints[0]), cmpi32); // Sort 1000000 int32s

    // Now delta encode, optional, store differences to previous int
    for (int i = 1, prev = ints[0]; i < 1000000; i++) {
        ints[i] -= prev;
        prev    += ints[i];
    }

    FILE *f = fopen("ints.bin", "w");
    fwrite(ints, 4, 1000000, f);
    fclose(f);
    exit(0);

}

现在用LZMA压缩ints.bin…

    $ xz -f --keep ints.bin       # 100 MB RAM
    $ 7z a ints.bin.7z ints.bin   # 130 MB RAM
    $ ls -lh ints.bin*
        3.8M ints.bin
        1.1M ints.bin.7z
        1.2M ints.bin.xz

其他回答

下面是一些可以解决这个问题的c++代码。

满足内存约束的证明:

编辑:无论是在这篇文章中还是在他的博客中,都没有作者提供的最大内存要求的证据。由于编码值所需的比特数取决于先前编码的值,因此这样的证明可能不是简单的。作者指出,根据经验,他可能遇到的最大编码大小是1011732,并任意选择了1013000的缓冲区大小。

typedef unsigned int u32;

namespace WorkArea
{
    static const u32 circularSize = 253250;
    u32 circular[circularSize] = { 0 };         // consumes 1013000 bytes

    static const u32 stageSize = 8000;
    u32 stage[stageSize];                       // consumes 32000 bytes

    ...

这两个数组总共占用1045000字节的存储空间。剩下1048576 - 1045000 - 2×1024 = 1528字节作为剩余变量和堆栈空间。

它在我的至强W3520上运行大约23秒。您可以使用以下Python脚本验证程序是否工作,假设程序名称为sort1mb.exe。

from subprocess import *
import random

sequence = [random.randint(0, 99999999) for i in xrange(1000000)]

sorter = Popen('sort1mb.exe', stdin=PIPE, stdout=PIPE)
for value in sequence:
    sorter.stdin.write('%08d\n' % value)
sorter.stdin.close()

result = [int(line) for line in sorter.stdout]
print('OK!' if result == sorted(sequence) else 'Error!')

该算法的详细解释可以在以下一系列帖子中找到:

1MB排序说明 算术编码与1MB排序问题 使用定点数学的算术编码

你试过转换成十六进制吗?

我可以看到前后文件大小都有了很大的减小;然后,用自由空间分步计算。也许,再次转换为dec, order,十六进制,另一个块,转换为dec, order…

对不起. .我不知道是否可行

# for i in {1..10000};do echo $(od -N1 -An -i /dev/urandom) ; done > 10000numbers
# for i in $(cat 10000numbers ); do printf '%x\n' $i; done > 10000numbers_hex
# ls -lah total 100K
drwxr-xr-x  2 diego diego 4,0K oct 22 22:32 .
drwx------ 39 diego diego  12K oct 22 22:31 ..
-rw-r--r--  1 diego diego  29K oct 22 22:33 10000numbers_hex
-rw-r--r--  1 diego diego  35K oct 22 22:31 10000numbers

(我原来的答案是错误的,对不起,数学不好,见下面的休息。)

这个怎么样?

前27位存储您所看到的最小数字,然后是与下一个数字的差值,编码如下:5位存储用于存储差值的位数,然后是差值。使用00000表示您再次看到了该数字。

这是因为插入的数字越多,数字之间的平均差值就越小,所以当你添加更多的数字时,你用更少的比特来存储差值。我想这叫做增量表。

我能想到的最糟糕的情况是所有数字都等距(以100为间隔),例如假设0是第一个数字:

000000000000000000000000000 00111 1100100
                            ^^^^^^^^^^^^^
                            a million times

27 + 1,000,000 * (5+7) bits = ~ 427k

Reddit来拯救你!

如果你要做的只是把它们排序,这个问题就简单了。它需要122k(100万比特)来存储你看到的数字(如果看到0,则第0位,如果看到2300,则第2300位,等等。

读取数字,将它们存储在位域中,然后在保持计数的同时将位移出。

但是,你必须记住你看过多少。我受到上面的子列表答案的启发,想出了这个方案:

用2位或27位代替1位:

00表示你没有看到这个数字。 01表示你看过一次 1表示你看过,接下来的26位是看了多少次。

我认为这是可行的:如果没有重复,你就有一个244k的列表。 在最坏的情况下,你看到每个数字两次(如果你看到一个数字三次,它会缩短列表的其余部分),这意味着你不止一次看到了50,000个,你0次或1次看到了950,000个项目。

50,000 * 27 + 950,000 * 2 = 396.7k.

如果你使用以下编码,你可以做进一步的改进:

0表示你没有看到这个数字 10表示你看过一次 11是你计数的方式

这将导致平均280.7k的存储空间。

编辑:我周日早上的数学算错了。

最坏的情况是,我们两次看到50万个数字,所以数学就变成了:

500,000 *27 + 500,000 *2 = 1.77M

交替编码导致平均存储为

500,000 * 27 + 500,000 = 1.70M

: (

如果输入流可以接收几次,这就容易多了(没有关于这方面的信息,想法和时间性能问题)。然后,我们可以数小数。有了计数值,就很容易生成输出流。通过计算值来压缩。 这取决于输入流中的内容。

我认为从组合学的角度来思考这个问题:有多少种可能的排序数字的组合?如果我们给出的组合是0,0,0 ....,0代码0,和0,0,0,…,1代码1,和999999999,99999999,…99999999是代码N, N是什么?换句话说,结果空间有多大?

Well, one way to think about this is noticing that this is a bijection of the problem of finding the number of monotonic paths in an N x M grid, where N = 1,000,000 and M = 100,000,000. In other words, if you have a grid that is 1,000,000 wide and 100,000,000 tall, how many shortest paths from the bottom left to the top right are there? Shortest paths of course require you only ever either move right or up (if you were to move down or left you would be undoing previously accomplished progress). To see how this is a bijection of our number sorting problem, observe the following:

您可以将路径中的任何水平支腿想象成排序中的一个数字,其中支腿的Y位置表示值。

所以如果路径只是向右移动一直到最后,然后一直跳到顶部,这相当于顺序为0,0,0,…,0。相反,如果它开始时一直跳到顶部,然后向右移动1,000,000次,这相当于999999999,99999999,……, 99999999。它向右移动一次,然后向上移动一次,然后向右移动一次,然后向上移动一次,等等,直到最后(然后必然会一直跳到顶部),相当于0,1,2,3,…,999999。

幸运的是,这个问题已经解决了,这样的网格有(N + M)个选择(M)条路径:

(1,000,000 + 100,000,000)选择(100,000,000)~= 2.27 * 10^2436455

N因此等于2.27 * 10^2436455,因此代码0表示0,0,0,…,0和代码2.27 * 10^2436455,一些变化表示999999999,99999999,…, 99999999。

为了存储从0到2.27 * 10^2436455的所有数字,您需要lg2(2.27 * 10^2436455) = 8.0937 * 10^6位。

1兆字节= 8388608比特> 8093700比特

这样看来,我们至少有足够的空间来存储结果!当然,有趣的部分是在数字流进来时进行排序。不确定最好的方法是我们有294908位剩余。我想一个有趣的技巧是在每个点都假设这是整个排序,找到该排序的代码,然后当你收到一个新数字时,返回并更新之前的代码。手,手,手。