我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

如果输入流可以接收几次,这就容易多了(没有关于这方面的信息,想法和时间性能问题)。然后,我们可以数小数。有了计数值,就很容易生成输出流。通过计算值来压缩。 这取决于输入流中的内容。

其他回答

你用的是哪种电脑?它可能没有任何其他“正常”的本地存储,但它是否有视频RAM,例如?100万像素x每像素32位(比如说)非常接近你所需的数据输入大小。

(我主要是问旧的Acorn RISC PC的内存,如果你选择低分辨率或低颜色深度的屏幕模式,它可以“借用”VRAM来扩展可用的系统RAM !)这在只有几MB普通RAM的机器上非常有用。

If the numbers are evenly distributed we can use Counting sort. We should keep the number of times that each number is repeated in an array. Available space is: 1 MB - 3 KB = 1045504 B or 8364032 bits Number of bits per number= 8364032/1000000 = 8 Therefore, we can store the number of times each number is repeated to the maximum of 2^8-1=255. Using this approach we have an extra 364032 bits unused that can be used to handle cases where a number is repeated more than 255 times. For example we can say a number 255 indicates a repetition greater than or equal to 255. In this case we should store a sequence of numbers+repetitions. We can handle 7745 special cases as shown bellow:

364032/(表示每个数字所需的位数+表示100万所需的位数)= 364032 / (27+20)=7745

谷歌的(坏)方法,从HN线程。存储rle风格的计数。

你的初始数据结构是“99999999:0”(都是零,没有看到任何数字),然后假设你看到了数字3,866,344,那么你的数据结构就变成了“3866343:0,1:1,96133654:0”,你可以看到数字总是在零位数和1位数之间交替,所以你可以假设奇数代表0位,偶数代表1位。这就变成了(3866343,1,96133654)

他们的问题似乎不包括副本,但让我们假设他们使用“0:1”来表示副本。

大问题#1:1M个整数的插入将花费很长时间。

大问题#2:像所有的普通增量编码解决方案一样,一些分布不能用这种方式覆盖。例如,1m整数,距离为0:99(例如,每个整数+99)。现在考虑相同的情况,但随机距离在0:99的范围内。(注:99999999/1000000 = 99.99)

谷歌的方法既不值得(缓慢),也不正确。但要为他们辩护,他们的问题可能略有不同。

在所有可能的输入中,这个问题只有一个解决方案。作弊。

通过TCP读取m个值,其中m接近内存中可排序的最大值,可能是n/4。 对250,000(大约)个数字进行排序并输出。 重复做另外3个四分之三。 让接收方在处理时合并接收到的4个数字列表。(这并不比使用单个列表慢多少。)

在10^8的范围内有10^6个值,所以平均每100个码点有一个值。存储第N个点到第(N+1)个点的距离。重复值的跳过值为0。这意味着跳跃平均需要7比特来存储,所以100万个跳跃将很适合我们的800万比特存储空间。

这些跳跃需要被编码成一个比特流,比如通过霍夫曼编码。插入是通过遍历比特流并在新值之后重写。通过遍历并写出隐含值来输出。出于实用性考虑,它可能被做成10^4个列表,每个列表包含10^4个代码点(平均100个值)。

随机数据的霍夫曼树可以通过假设跳跃长度上的泊松分布(均值=方差=100)先验地构建,但可以在输入上保留真实的统计数据,并用于生成处理病理病例的最佳树。