我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

我们可以利用网络堆栈,在我们得到所有数字之前,按顺序发送数字。如果你发送1M的数据,TCP/IP会把它分解成1500字节的数据包,并按照目标发送。每个包将被赋予一个序列号。

我们可以用手来做。在填满内存之前,我们可以对现有的数据进行排序,并将列表发送给目标,但在每个数字周围的序列中留下空洞。然后用同样的方法处理第二个1/2的数字,使用序列中的这些洞。

远端的网络堆栈将按顺序组装结果数据流,然后将其提交给应用程序。

它使用网络来执行归并排序。这是一个完全的黑客,但我是受到之前列出的其他网络黑客的启发。

其他回答

您只需要按顺序存储数字之间的差异,并使用编码来压缩这些序列号。我们有2^23位。我们将它分成6位块,让最后一位表示这个数字是否扩展到另外6位(5位加上扩展块)。

因此,000010是1,000100是2。000001100000表示128。现在,我们考虑用最坏的类型来表示不超过10,000,000的数字序列的差异。可能有10000000 /2^5的差异大于2^5,10000000 /2^10的差异大于2^10,10000000 /2^15的差异大于2^15,等等。

所以,我们把表示这个序列所需要的比特数相加。我们有1,000,000*6 +汇总(10,000,000/2^5)*6+汇总(10,000,000/2^10)*6+汇总(10,000,000/2^15)*6+汇总(10,000,000/2^20)*4=7935479。

2^24 = 8388608。由于8388608 > 7935479,我们应该很容易有足够的内存。我们可能还需要一点内存来存储插入新数字时的和。然后我们遍历这个序列,找到插入新数字的位置,如果必要的话减少下一个差值,并将它之后的所有内容都右移。

Gilmanov的答案在假设上是非常错误的。它开始基于毫无意义的一百万个连续整数进行推测。这意味着没有差距。这些随机的间隙,不管有多小,真的是一个糟糕的主意。

你自己试试。获得100万个27位随机整数,对它们排序,用7-Zip, xz压缩,任何你想要的LZMA。结果超过1.5 MB。上面的前提是连续数字的压缩。即使是增量编码也超过1.1 MB。没关系,这使用了超过100 MB的RAM进行压缩。因此,即使压缩的整数也不适合这个问题,更不用说运行时RAM的使用了。

让我难过的是,人们竟然投票支持漂亮的图像和合理化。

#include <stdint.h>
#include <stdlib.h>
#include <time.h>

int32_t ints[1000000]; // Random 27-bit integers

int cmpi32(const void *a, const void *b) {
    return ( *(int32_t *)a - *(int32_t *)b );
}

int main() {
    int32_t *pi = ints; // Pointer to input ints (REPLACE W/ read from net)

    // Fill pseudo-random integers of 27 bits
    srand(time(NULL));
    for (int i = 0; i < 1000000; i++)
        ints[i] = rand() & ((1<<27) - 1); // Random 32 bits masked to 27 bits

    qsort(ints, 1000000, sizeof (ints[0]), cmpi32); // Sort 1000000 int32s

    // Now delta encode, optional, store differences to previous int
    for (int i = 1, prev = ints[0]; i < 1000000; i++) {
        ints[i] -= prev;
        prev    += ints[i];
    }

    FILE *f = fopen("ints.bin", "w");
    fwrite(ints, 4, 1000000, f);
    fclose(f);
    exit(0);

}

现在用LZMA压缩ints.bin…

    $ xz -f --keep ints.bin       # 100 MB RAM
    $ 7z a ints.bin.7z ints.bin   # 130 MB RAM
    $ ls -lh ints.bin*
        3.8M ints.bin
        1.1M ints.bin.7z
        1.2M ints.bin.xz

如果数字的范围是有限的(只能有2个8位数,或者只有10个不同的8位数),那么你可以编写一个优化的排序算法。但如果你想对所有可能的8位数进行排序,这在内存那么少的情况下是不可能的。

谷歌的(坏)方法,从HN线程。存储rle风格的计数。

你的初始数据结构是“99999999:0”(都是零,没有看到任何数字),然后假设你看到了数字3,866,344,那么你的数据结构就变成了“3866343:0,1:1,96133654:0”,你可以看到数字总是在零位数和1位数之间交替,所以你可以假设奇数代表0位,偶数代表1位。这就变成了(3866343,1,96133654)

他们的问题似乎不包括副本,但让我们假设他们使用“0:1”来表示副本。

大问题#1:1M个整数的插入将花费很长时间。

大问题#2:像所有的普通增量编码解决方案一样,一些分布不能用这种方式覆盖。例如,1m整数,距离为0:99(例如,每个整数+99)。现在考虑相同的情况,但随机距离在0:99的范围内。(注:99999999/1000000 = 99.99)

谷歌的方法既不值得(缓慢),也不正确。但要为他们辩护,他们的问题可能略有不同。

我认为从组合学的角度来思考这个问题:有多少种可能的排序数字的组合?如果我们给出的组合是0,0,0 ....,0代码0,和0,0,0,…,1代码1,和999999999,99999999,…99999999是代码N, N是什么?换句话说,结果空间有多大?

Well, one way to think about this is noticing that this is a bijection of the problem of finding the number of monotonic paths in an N x M grid, where N = 1,000,000 and M = 100,000,000. In other words, if you have a grid that is 1,000,000 wide and 100,000,000 tall, how many shortest paths from the bottom left to the top right are there? Shortest paths of course require you only ever either move right or up (if you were to move down or left you would be undoing previously accomplished progress). To see how this is a bijection of our number sorting problem, observe the following:

您可以将路径中的任何水平支腿想象成排序中的一个数字,其中支腿的Y位置表示值。

所以如果路径只是向右移动一直到最后,然后一直跳到顶部,这相当于顺序为0,0,0,…,0。相反,如果它开始时一直跳到顶部,然后向右移动1,000,000次,这相当于999999999,99999999,……, 99999999。它向右移动一次,然后向上移动一次,然后向右移动一次,然后向上移动一次,等等,直到最后(然后必然会一直跳到顶部),相当于0,1,2,3,…,999999。

幸运的是,这个问题已经解决了,这样的网格有(N + M)个选择(M)条路径:

(1,000,000 + 100,000,000)选择(100,000,000)~= 2.27 * 10^2436455

N因此等于2.27 * 10^2436455,因此代码0表示0,0,0,…,0和代码2.27 * 10^2436455,一些变化表示999999999,99999999,…, 99999999。

为了存储从0到2.27 * 10^2436455的所有数字,您需要lg2(2.27 * 10^2436455) = 8.0937 * 10^6位。

1兆字节= 8388608比特> 8093700比特

这样看来,我们至少有足够的空间来存储结果!当然,有趣的部分是在数字流进来时进行排序。不确定最好的方法是我们有294908位剩余。我想一个有趣的技巧是在每个点都假设这是整个排序,找到该排序的代码,然后当你收到一个新数字时,返回并更新之前的代码。手,手,手。