我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

诀窍是将算法状态表示为“增量计数器”=“+”和“输出计数器”=“!”字符的压缩流,这是一个整数多集。例如,集合{0,3,3,4}将被表示为“!+++!!+!”,后面跟着任意数量的“+”字符。要修改多集,您可以输出字符,每次只保持恒定的解压缩量,并在以压缩形式流回之前进行适当的更改。

细节

我们知道最终集合中恰好有10^6个数字,所以最多有10^6个“!”字符。我们还知道我们的范围大小为10^8,这意味着最多有10^8个“+”字符。10^6 "的排列方式!s在10^8 "+"s中的值是(10^8 + 10^6)选10^6,因此指定某种特定的排列需要大约0.965 MiB '的数据。那太紧了。

我们可以独立对待每个角色而不超出我们的配额。“+”字符正好是“!”字符的100倍,如果我们忘记了它们是相互依赖的,那么每个字符是“+”的概率就简化为100:1。100:101的几率对应于每个字符0.08位,对于几乎相同的~0.965 MiB(忽略依赖关系在这种情况下只有~12位的代价!)

The simplest technique for storing independent characters with known prior probability is Huffman coding. Note that we need an impractically large tree (A huffman tree for blocks of 10 characters has an average cost per block of about 2.4 bits, for a total of ~2.9 Mib. A huffman tree for blocks of 20 characters has an average cost per block of about 3 bits, which is a total of ~1.8 MiB. We're probably going to need a block of size on the order of a hundred, implying more nodes in our tree than all the computer equipment that has ever existed can store.). However, ROM is technically "free" according to the problem and practical solutions that take advantage of the regularity in the tree will look essentially the same.

伪代码

Have a sufficiently large huffman tree (or similar block-by-block compression data) stored in ROM Start with a compressed string of 10^8 "+" characters. To insert the number N, stream out the compressed string until N "+" characters have gone past then insert a "!". Stream the recompressed string back over the previous one as you go, keeping a constant amount of buffered blocks to avoid over/under-runs. Repeat one million times: [input, stream decompress>insert>compress], then decompress to output

其他回答

(我原来的答案是错误的,对不起,数学不好,见下面的休息。)

这个怎么样?

前27位存储您所看到的最小数字,然后是与下一个数字的差值,编码如下:5位存储用于存储差值的位数,然后是差值。使用00000表示您再次看到了该数字。

这是因为插入的数字越多,数字之间的平均差值就越小,所以当你添加更多的数字时,你用更少的比特来存储差值。我想这叫做增量表。

我能想到的最糟糕的情况是所有数字都等距(以100为间隔),例如假设0是第一个数字:

000000000000000000000000000 00111 1100100
                            ^^^^^^^^^^^^^
                            a million times

27 + 1,000,000 * (5+7) bits = ~ 427k

Reddit来拯救你!

如果你要做的只是把它们排序,这个问题就简单了。它需要122k(100万比特)来存储你看到的数字(如果看到0,则第0位,如果看到2300,则第2300位,等等。

读取数字,将它们存储在位域中,然后在保持计数的同时将位移出。

但是,你必须记住你看过多少。我受到上面的子列表答案的启发,想出了这个方案:

用2位或27位代替1位:

00表示你没有看到这个数字。 01表示你看过一次 1表示你看过,接下来的26位是看了多少次。

我认为这是可行的:如果没有重复,你就有一个244k的列表。 在最坏的情况下,你看到每个数字两次(如果你看到一个数字三次,它会缩短列表的其余部分),这意味着你不止一次看到了50,000个,你0次或1次看到了950,000个项目。

50,000 * 27 + 950,000 * 2 = 396.7k.

如果你使用以下编码,你可以做进一步的改进:

0表示你没有看到这个数字 10表示你看过一次 11是你计数的方式

这将导致平均280.7k的存储空间。

编辑:我周日早上的数学算错了。

最坏的情况是,我们两次看到50万个数字,所以数学就变成了:

500,000 *27 + 500,000 *2 = 1.77M

交替编码导致平均存储为

500,000 * 27 + 500,000 = 1.70M

: (

我认为解决方案是结合视频编码的技术,即离散余弦变换。在数字视频中,不是将视频的亮度或颜色的变化记录为常规值,如110 112 115 116,而是从最后一个中减去每一个(类似于运行长度编码)。110 112 115 116变成110 2 3 1。这些值,2,3 1比原始值需要更少的比特。

So lets say we create a list of the input values as they arrive on the socket. We are storing in each element, not the value, but the offset of the one before it. We sort as we go, so the offsets are only going to be positive. But the offset could be 8 decimal digits wide which this fits in 3 bytes. Each element can't be 3 bytes, so we need to pack these. We could use the top bit of each byte as a "continue bit", indicating that the next byte is part of the number and the lower 7 bits of each byte need to be combined. zero is valid for duplicates.

当列表填满时,数字之间的距离应该越来越近,这意味着平均只有1个字节用于确定到下一个值的距离。7位值和1位偏移(如果方便的话),但可能存在一个“继续”值需要少于8位的最佳点。

总之,我做了一些实验。我使用随机数生成器,我可以将100万个排序过的8位十进制数字放入大约1279000字节。每个数字之间的平均间隔始终是99…

public class Test {
    public static void main(String[] args) throws IOException {
        // 1 million values
        int[] values = new int[1000000];

        // create random values up to 8 digits lrong
        Random random = new Random();
        for (int x=0;x<values.length;x++) {
            values[x] = random.nextInt(100000000);
        }
        Arrays.sort(values);

        ByteArrayOutputStream baos = new ByteArrayOutputStream();

        int av = 0;    
        writeCompact(baos, values[0]);     // first value
        for (int x=1;x<values.length;x++) {
            int v = values[x] - values[x-1];  // difference
            av += v;
            System.out.println(values[x] + " diff " + v);
            writeCompact(baos, v);
        }

        System.out.println("Average offset " + (av/values.length));
        System.out.println("Fits in " + baos.toByteArray().length);
    }

    public static void writeCompact(OutputStream os, long value) throws IOException {
        do {
            int b = (int) value & 0x7f;
            value = (value & 0x7fffffffffffffffl) >> 7;
            os.write(value == 0 ? b : (b | 0x80));
        } while (value != 0);
    }
}

如果数字的范围是有限的(只能有2个8位数,或者只有10个不同的8位数),那么你可以编写一个优化的排序算法。但如果你想对所有可能的8位数进行排序,这在内存那么少的情况下是不可能的。

在接收流时执行这些步骤。

首先设置一些合理的块大小

伪代码思想:

The first step would be to find all the duplicates and stick them in a dictionary with its count and remove them. The third step would be to place number that exist in sequence of their algorithmic steps and place them in counters special dictionaries with the first number and their step like n, n+1..., n+2, 2n, 2n+1, 2n+2... Begin to compress in chunks some reasonable ranges of number like every 1000 or ever 10000 the remaining numbers that appear less often to repeat. Uncompress that range if a number is found and add it to the range and leave it uncompressed for a while longer. Otherwise just add that number to a byte[chunkSize]

在接收流时继续执行前4步。最后一步是,如果超出内存,则失败,或者在收集完所有数据后开始输出结果,即开始对范围进行排序,并按顺序输出结果,然后按需要解压缩的顺序解压结果,并在得到它们时对它们进行排序。

我想试试基数树。如果可以将数据存储在树中,那么就可以执行顺序遍历来传输数据。

我不确定你是否能把它装进1MB,但我认为值得一试。