我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。
数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?
问答来源:
slashdot.org
cleaton.net
我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。
数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?
问答来源:
slashdot.org
cleaton.net
当前回答
To represent the sorted array one can just store the first element and the difference between adjacent elements. In this way we are concerned with encoding 10^6 elements that can sum up to at most 10^8. Let's call this D. To encode the elements of D one can use a Huffman code. The dictionary for the Huffman code can be created on the go and the array updated every time a new item is inserted in the sorted array (insertion sort). Note that when the dictionary changes because of a new item the whole array should be updated to match the new encoding.
如果每个唯一元素的数量相等,则编码D中每个元素的平均比特数将最大化。比如元素d1 d2…, dN在D中各出现F次。在这种情况下(最坏的情况是输入序列中同时有0和10^8)我们有
sum(1<=i<=N) F. di = 10^8
在哪里
sum(1<=i<=N) F=10^6,或F=10^6/N,归一化频率将是p= F/10^=1/N
平均比特数为-log2(1/P) = log2(N)。在这种情况下,我们应该找到使n最大化的情况,这发生在di从0开始的连续数,或者di= i-1时
10 ^ 8 =(1 < =我< = N) f . di =(1 < =我< = N) (10 ^ 6 / N)(张)= (10 ^ 6 / N) N (N - 1) / 2
i.e.
N <= 201。在这种情况下,平均比特数是log2(201)=7.6511,这意味着我们将需要大约1字节的每个输入元素来保存排序的数组。注意,这并不意味着D一般不能有超过201个元素。它只是说明,如果D的元素是均匀分布的,那么D的唯一值不可能超过201个。
其他回答
基数树表示可以接近于处理这个问题,因为基数树利用了“前缀压缩”的优势。但是很难想象一个基树表表法可以在一个字节中表示单个节点——两个可能是极限。
但是,不管数据是如何表示的,一旦它被排序,它就可以以前缀压缩的形式存储,其中数字10、11和12将由001b、001b、001b表示,表示从前一个数字增加1。那么,也许10101b表示增量5,1101001b表示增量9,以此类推。
在10^8的范围内有10^6个值,所以平均每100个码点有一个值。存储第N个点到第(N+1)个点的距离。重复值的跳过值为0。这意味着跳跃平均需要7比特来存储,所以100万个跳跃将很适合我们的800万比特存储空间。
这些跳跃需要被编码成一个比特流,比如通过霍夫曼编码。插入是通过遍历比特流并在新值之后重写。通过遍历并写出隐含值来输出。出于实用性考虑,它可能被做成10^4个列表,每个列表包含10^4个代码点(平均100个值)。
随机数据的霍夫曼树可以通过假设跳跃长度上的泊松分布(均值=方差=100)先验地构建,但可以在输入上保留真实的统计数据,并用于生成处理病理病例的最佳树。
现在的目标是一个实际的解决方案,覆盖所有可能的情况下,输入在8位数范围内,只有1MB的RAM。注:工作正在进行中,明天继续。使用对已排序整型的增量进行算术编码,对于1M个已排序整型,最坏的情况是每个条目花费大约7位(因为99999999/1000000是99,而log2(99)几乎是7位)。
但是你需要将1m个整数排序到7位或8位!级数越短,delta就越大,因此每个元素的比特数就越多。
我正在努力尽可能多地压缩(几乎)在原地。第一批接近250K的整数最多每个需要大约9位。因此结果大约需要275KB。重复使用剩余的空闲内存几次。然后解压缩-就地合并-压缩这些压缩块。这很难,但也是可能的。我认为。
合并后的列表将越来越接近每整数7位的目标。但是我不知道合并循环需要多少次迭代。也许3。
但是算术编码实现的不精确性可能使它不可能实现。如果这个问题是可能的,它将是非常紧张的。
有志愿者吗?
假设这个任务是可能的。在输出之前,内存中会有一个百万个排序数字的表示。有多少种不同的表示法?由于可能有重复的数字,我们不能使用nCr(选择),但有一种叫做multichoose的操作,它适用于多集。
在0..99,999,999范围内有22e2436455种方法来选择一百万个数字。 这需要8,093,730位来表示每个可能的组合,或1,011,717字节。
所以理论上是可能的,如果你能想出一个合理(足够)的数字排序表。例如,一个疯狂的表示可能需要一个10MB的查找表或数千行代码。
但是,如果“1M RAM”意味着100万个字节,那么显然没有足够的空间。事实上,多5%的内存使它在理论上成为可能,这对我来说意味着表示必须非常有效,可能是不理智的。
请参阅第一个正确答案或后面带有算术编码的答案。下面你可能会发现一些有趣的,但不是100%防弹的解决方案。
这是一个非常有趣的任务,这里有另一个解决方案。我希望有人会觉得这个结果有用(或者至少有趣)。
阶段1:初始数据结构,粗略压缩方法,基本结果
Let's do some simple math: we have 1M (1048576 bytes) of RAM initially available to store 10^6 8 digit decimal numbers. [0;99999999]. So to store one number 27 bits are needed (taking the assumption that unsigned numbers will be used). Thus, to store a raw stream ~3.5M of RAM will be needed. Somebody already said it doesn't seem to be feasible, but I would say the task can be solved if the input is "good enough". Basically, the idea is to compress the input data with compression factor 0.29 or higher and do sorting in a proper manner.
让我们先解决压缩问题。有一些相关的测试已经可用:
http://www.theeggeadventure.com/wikimedia/index.php/Java_Data_Compression
“我运行了一个测试,压缩100万个连续整数使用 各种形式的压缩。结果如下:
None 4000027
Deflate 2006803
Filtered 1391833
BZip2 427067
Lzma 255040
看起来LZMA (Lempel-Ziv-Markov链算法)是一个很好的选择。我准备了一个简单的PoC,但仍有一些细节需要强调:
Memory is limited so the idea is to presort numbers and use compressed buckets (dynamic size) as temporary storage It is easier to achieve a better compression factor with presorted data, so there is a static buffer for each bucket (numbers from the buffer are to be sorted before LZMA) Each bucket holds a specific range, so the final sort can be done for each bucket separately Bucket's size can be properly set, so there will be enough memory to decompress stored data and do the final sort for each bucket separately
请注意,所附的代码是一个POC,它不能用作最终解决方案,它只是演示了使用几个较小的缓冲区以某种最佳方式(可能是压缩)存储预排序数字的想法。LZMA并不是最终的解决方案。它被用作向这个PoC引入压缩的最快方法。
请看下面的PoC代码(请注意它只是一个演示,要编译它将需要LZMA-Java):
public class MemorySortDemo {
static final int NUM_COUNT = 1000000;
static final int NUM_MAX = 100000000;
static final int BUCKETS = 5;
static final int DICT_SIZE = 16 * 1024; // LZMA dictionary size
static final int BUCKET_SIZE = 1024;
static final int BUFFER_SIZE = 10 * 1024;
static final int BUCKET_RANGE = NUM_MAX / BUCKETS;
static class Producer {
private Random random = new Random();
public int produce() { return random.nextInt(NUM_MAX); }
}
static class Bucket {
public int size, pointer;
public int[] buffer = new int[BUFFER_SIZE];
public ByteArrayOutputStream tempOut = new ByteArrayOutputStream();
public DataOutputStream tempDataOut = new DataOutputStream(tempOut);
public ByteArrayOutputStream compressedOut = new ByteArrayOutputStream();
public void submitBuffer() throws IOException {
Arrays.sort(buffer, 0, pointer);
for (int j = 0; j < pointer; j++) {
tempDataOut.writeInt(buffer[j]);
size++;
}
pointer = 0;
}
public void write(int value) throws IOException {
if (isBufferFull()) {
submitBuffer();
}
buffer[pointer++] = value;
}
public boolean isBufferFull() {
return pointer == BUFFER_SIZE;
}
public byte[] compressData() throws IOException {
tempDataOut.close();
return compress(tempOut.toByteArray());
}
private byte[] compress(byte[] input) throws IOException {
final BufferedInputStream in = new BufferedInputStream(new ByteArrayInputStream(input));
final DataOutputStream out = new DataOutputStream(new BufferedOutputStream(compressedOut));
final Encoder encoder = new Encoder();
encoder.setEndMarkerMode(true);
encoder.setNumFastBytes(0x20);
encoder.setDictionarySize(DICT_SIZE);
encoder.setMatchFinder(Encoder.EMatchFinderTypeBT4);
ByteArrayOutputStream encoderPrperties = new ByteArrayOutputStream();
encoder.writeCoderProperties(encoderPrperties);
encoderPrperties.flush();
encoderPrperties.close();
encoder.code(in, out, -1, -1, null);
out.flush();
out.close();
in.close();
return encoderPrperties.toByteArray();
}
public int[] decompress(byte[] properties) throws IOException {
InputStream in = new ByteArrayInputStream(compressedOut.toByteArray());
ByteArrayOutputStream data = new ByteArrayOutputStream(10 * 1024);
BufferedOutputStream out = new BufferedOutputStream(data);
Decoder decoder = new Decoder();
decoder.setDecoderProperties(properties);
decoder.code(in, out, 4 * size);
out.flush();
out.close();
in.close();
DataInputStream input = new DataInputStream(new ByteArrayInputStream(data.toByteArray()));
int[] array = new int[size];
for (int k = 0; k < size; k++) {
array[k] = input.readInt();
}
return array;
}
}
static class Sorter {
private Bucket[] bucket = new Bucket[BUCKETS];
public void doSort(Producer p, Consumer c) throws IOException {
for (int i = 0; i < bucket.length; i++) { // allocate buckets
bucket[i] = new Bucket();
}
for(int i=0; i< NUM_COUNT; i++) { // produce some data
int value = p.produce();
int bucketId = value/BUCKET_RANGE;
bucket[bucketId].write(value);
c.register(value);
}
for (int i = 0; i < bucket.length; i++) { // submit non-empty buffers
bucket[i].submitBuffer();
}
byte[] compressProperties = null;
for (int i = 0; i < bucket.length; i++) { // compress the data
compressProperties = bucket[i].compressData();
}
printStatistics();
for (int i = 0; i < bucket.length; i++) { // decode & sort buckets one by one
int[] array = bucket[i].decompress(compressProperties);
Arrays.sort(array);
for(int v : array) {
c.consume(v);
}
}
c.finalCheck();
}
public void printStatistics() {
int size = 0;
int sizeCompressed = 0;
for (int i = 0; i < BUCKETS; i++) {
int bucketSize = 4*bucket[i].size;
size += bucketSize;
sizeCompressed += bucket[i].compressedOut.size();
System.out.println(" bucket[" + i
+ "] contains: " + bucket[i].size
+ " numbers, compressed size: " + bucket[i].compressedOut.size()
+ String.format(" compression factor: %.2f", ((double)bucket[i].compressedOut.size())/bucketSize));
}
System.out.println(String.format("Data size: %.2fM",(double)size/(1014*1024))
+ String.format(" compressed %.2fM",(double)sizeCompressed/(1014*1024))
+ String.format(" compression factor %.2f",(double)sizeCompressed/size));
}
}
static class Consumer {
private Set<Integer> values = new HashSet<>();
int v = -1;
public void consume(int value) {
if(v < 0) v = value;
if(v > value) {
throw new IllegalArgumentException("Current value is greater than previous: " + v + " > " + value);
}else{
v = value;
values.remove(value);
}
}
public void register(int value) {
values.add(value);
}
public void finalCheck() {
System.out.println(values.size() > 0 ? "NOT OK: " + values.size() : "OK!");
}
}
public static void main(String[] args) throws IOException {
Producer p = new Producer();
Consumer c = new Consumer();
Sorter sorter = new Sorter();
sorter.doSort(p, c);
}
}
对于随机数,它产生如下结果:
bucket[0] contains: 200357 numbers, compressed size: 353679 compression factor: 0.44
bucket[1] contains: 199465 numbers, compressed size: 352127 compression factor: 0.44
bucket[2] contains: 199682 numbers, compressed size: 352464 compression factor: 0.44
bucket[3] contains: 199949 numbers, compressed size: 352947 compression factor: 0.44
bucket[4] contains: 200547 numbers, compressed size: 353914 compression factor: 0.44
Data size: 3.85M compressed 1.70M compression factor 0.44
对于一个简单的升序序列(使用一个桶),它产生:
bucket[0] contains: 1000000 numbers, compressed size: 256700 compression factor: 0.06
Data size: 3.85M compressed 0.25M compression factor 0.06
EDIT
结论:
不要试图欺骗大自然 使用更简单的压缩和更低的内存占用 确实需要一些额外的线索。普通的防弹方案似乎并不可行。
第二阶段:强化压缩,最终结论
正如在前一节中已经提到的,任何合适的压缩技术都可以使用。因此,让我们摒弃LZMA,转而采用更简单、更好(如果可能的话)的方法。有很多好的解决方案,包括算术编码,基树等。
无论如何,简单但有用的编码方案将比另一个外部库更能说明问题,它提供了一些漂亮的算法。实际的解决方案非常简单:因为存在部分排序的数据桶,所以可以使用增量而不是数字。
随机输入测试结果稍好:
bucket[0] contains: 10103 numbers, compressed size: 13683 compression factor: 0.34
bucket[1] contains: 9885 numbers, compressed size: 13479 compression factor: 0.34
...
bucket[98] contains: 10026 numbers, compressed size: 13612 compression factor: 0.34
bucket[99] contains: 10058 numbers, compressed size: 13701 compression factor: 0.34
Data size: 3.85M compressed 1.31M compression factor 0.34
示例代码
public static void encode(int[] buffer, int length, BinaryOut output) {
short size = (short)(length & 0x7FFF);
output.write(size);
output.write(buffer[0]);
for(int i=1; i< size; i++) {
int next = buffer[i] - buffer[i-1];
int bits = getBinarySize(next);
int len = bits;
if(bits > 24) {
output.write(3, 2);
len = bits - 24;
}else if(bits > 16) {
output.write(2, 2);
len = bits-16;
}else if(bits > 8) {
output.write(1, 2);
len = bits - 8;
}else{
output.write(0, 2);
}
if (len > 0) {
if ((len % 2) > 0) {
len = len / 2;
output.write(len, 2);
output.write(false);
} else {
len = len / 2 - 1;
output.write(len, 2);
}
output.write(next, bits);
}
}
}
public static short decode(BinaryIn input, int[] buffer, int offset) {
short length = input.readShort();
int value = input.readInt();
buffer[offset] = value;
for (int i = 1; i < length; i++) {
int flag = input.readInt(2);
int bits;
int next = 0;
switch (flag) {
case 0:
bits = 2 * input.readInt(2) + 2;
next = input.readInt(bits);
break;
case 1:
bits = 8 + 2 * input.readInt(2) +2;
next = input.readInt(bits);
break;
case 2:
bits = 16 + 2 * input.readInt(2) +2;
next = input.readInt(bits);
break;
case 3:
bits = 24 + 2 * input.readInt(2) +2;
next = input.readInt(bits);
break;
}
buffer[offset + i] = buffer[offset + i - 1] + next;
}
return length;
}
请注意,这种方法:
不消耗大量内存 使用流 提供了不那么坏的结果
完整的代码可以在这里找到,BinaryInput和BinaryOutput实现可以在这里找到
最终结论
没有最终结论:)有时候,从元级别的角度来回顾一下任务,这确实是个好主意。
花点时间完成这个任务很有趣。顺便说一下,下面有很多有趣的答案。感谢您的关注和愉快的编码。