我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

现在的目标是一个实际的解决方案,覆盖所有可能的情况下,输入在8位数范围内,只有1MB的RAM。注:工作正在进行中,明天继续。使用对已排序整型的增量进行算术编码,对于1M个已排序整型,最坏的情况是每个条目花费大约7位(因为99999999/1000000是99,而log2(99)几乎是7位)。

但是你需要将1m个整数排序到7位或8位!级数越短,delta就越大,因此每个元素的比特数就越多。

我正在努力尽可能多地压缩(几乎)在原地。第一批接近250K的整数最多每个需要大约9位。因此结果大约需要275KB。重复使用剩余的空闲内存几次。然后解压缩-就地合并-压缩这些压缩块。这很难,但也是可能的。我认为。

合并后的列表将越来越接近每整数7位的目标。但是我不知道合并循环需要多少次迭代。也许3。

但是算术编码实现的不精确性可能使它不可能实现。如果这个问题是可能的,它将是非常紧张的。

有志愿者吗?

其他回答

我想试试基数树。如果可以将数据存储在树中,那么就可以执行顺序遍历来传输数据。

我不确定你是否能把它装进1MB,但我认为值得一试。

我们可以利用网络堆栈,在我们得到所有数字之前,按顺序发送数字。如果你发送1M的数据,TCP/IP会把它分解成1500字节的数据包,并按照目标发送。每个包将被赋予一个序列号。

我们可以用手来做。在填满内存之前,我们可以对现有的数据进行排序,并将列表发送给目标,但在每个数字周围的序列中留下空洞。然后用同样的方法处理第二个1/2的数字,使用序列中的这些洞。

远端的网络堆栈将按顺序组装结果数据流,然后将其提交给应用程序。

它使用网络来执行归并排序。这是一个完全的黑客,但我是受到之前列出的其他网络黑客的启发。

排序在这里是次要问题。正如其他人所说,仅仅存储整数是困难的,并且不能在所有输入上工作,因为每个数字需要27位。

我对此的看法是:只存储连续(排序)整数之间的差异,因为它们很可能很小。然后使用压缩方案,例如,每个输入数字增加2位,来编码数字存储在多少位上。 喜欢的东西:

00 -> 5 bits
01 -> 11 bits
10 -> 19 bits
11 -> 27 bits

在给定的内存限制内,应该能够存储相当数量的可能输入列表。如何选择压缩方案以使其在最大输入数量上工作的数学超出了我的范围。

我希望您能够利用输入的领域特定知识,在此基础上找到足够好的整数压缩方案。

哦,然后,当你收到数据时,你对那个排序的列表进行插入排序。

诀窍是将算法状态表示为“增量计数器”=“+”和“输出计数器”=“!”字符的压缩流,这是一个整数多集。例如,集合{0,3,3,4}将被表示为“!+++!!+!”,后面跟着任意数量的“+”字符。要修改多集,您可以输出字符,每次只保持恒定的解压缩量,并在以压缩形式流回之前进行适当的更改。

细节

我们知道最终集合中恰好有10^6个数字,所以最多有10^6个“!”字符。我们还知道我们的范围大小为10^8,这意味着最多有10^8个“+”字符。10^6 "的排列方式!s在10^8 "+"s中的值是(10^8 + 10^6)选10^6,因此指定某种特定的排列需要大约0.965 MiB '的数据。那太紧了。

我们可以独立对待每个角色而不超出我们的配额。“+”字符正好是“!”字符的100倍,如果我们忘记了它们是相互依赖的,那么每个字符是“+”的概率就简化为100:1。100:101的几率对应于每个字符0.08位,对于几乎相同的~0.965 MiB(忽略依赖关系在这种情况下只有~12位的代价!)

The simplest technique for storing independent characters with known prior probability is Huffman coding. Note that we need an impractically large tree (A huffman tree for blocks of 10 characters has an average cost per block of about 2.4 bits, for a total of ~2.9 Mib. A huffman tree for blocks of 20 characters has an average cost per block of about 3 bits, which is a total of ~1.8 MiB. We're probably going to need a block of size on the order of a hundred, implying more nodes in our tree than all the computer equipment that has ever existed can store.). However, ROM is technically "free" according to the problem and practical solutions that take advantage of the regularity in the tree will look essentially the same.

伪代码

Have a sufficiently large huffman tree (or similar block-by-block compression data) stored in ROM Start with a compressed string of 10^8 "+" characters. To insert the number N, stream out the compressed string until N "+" characters have gone past then insert a "!". Stream the recompressed string back over the previous one as you go, keeping a constant amount of buffered blocks to avoid over/under-runs. Repeat one million times: [input, stream decompress>insert>compress], then decompress to output

如果输入流可以接收几次,这就容易多了(没有关于这方面的信息,想法和时间性能问题)。然后,我们可以数小数。有了计数值,就很容易生成输出流。通过计算值来压缩。 这取决于输入流中的内容。