我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

我们有1 MB - 3 KB RAM = 2^23 - 3*2^13位= 8388608 - 24576 = 8364032位可用。

我们给出10^8范围内的10^6个数。这给出了~100 < 2^7 = 128的平均差距

让我们首先考虑一个比较简单的问题,即当所有间距都< 128时,数字间距相当均匀。这很简单。只存储第一个数字和7位空白:

(27位)+ 10^6个7位间隔数=需要7000027位

注意重复的数字间隔为0。

但如果间隔大于127呢?

好吧,让我们直接表示小于127的间隙大小,但是127的间隙大小后面跟着一个连续的8位编码来表示实际的间隙长度:

 10xxxxxx xxxxxxxx                       = 127 .. 16,383
 110xxxxx xxxxxxxx xxxxxxxx              = 16384 .. 2,097,151

etc.

注意这个数字表示描述了它自己的长度,所以我们知道下一个间隙数何时开始。

对于小于127的小间隙,仍然需要7000027位。

可能有高达(10^8)/(2^7)= 781250个23位的间隙数,需要额外的16* 781250 = 12500,000位,这是太多了。我们需要一个更紧凑和缓慢增加的差距表示。

平均差距大小是100,所以如果我们把它们重新排序 [100, 99, 101, 98, 102,…], 2, 198, 1, 199, 0, 200, 201, 202,…] 然后用密集的二进制斐波那契基编码索引它,没有对零(例如,11011=8+5+2+1=16),数字用“00”分隔,然后我认为我们可以保持足够短的差距表示,但它需要更多的分析。

其他回答

我认为从组合学的角度来思考这个问题:有多少种可能的排序数字的组合?如果我们给出的组合是0,0,0 ....,0代码0,和0,0,0,…,1代码1,和999999999,99999999,…99999999是代码N, N是什么?换句话说,结果空间有多大?

Well, one way to think about this is noticing that this is a bijection of the problem of finding the number of monotonic paths in an N x M grid, where N = 1,000,000 and M = 100,000,000. In other words, if you have a grid that is 1,000,000 wide and 100,000,000 tall, how many shortest paths from the bottom left to the top right are there? Shortest paths of course require you only ever either move right or up (if you were to move down or left you would be undoing previously accomplished progress). To see how this is a bijection of our number sorting problem, observe the following:

您可以将路径中的任何水平支腿想象成排序中的一个数字,其中支腿的Y位置表示值。

所以如果路径只是向右移动一直到最后,然后一直跳到顶部,这相当于顺序为0,0,0,…,0。相反,如果它开始时一直跳到顶部,然后向右移动1,000,000次,这相当于999999999,99999999,……, 99999999。它向右移动一次,然后向上移动一次,然后向右移动一次,然后向上移动一次,等等,直到最后(然后必然会一直跳到顶部),相当于0,1,2,3,…,999999。

幸运的是,这个问题已经解决了,这样的网格有(N + M)个选择(M)条路径:

(1,000,000 + 100,000,000)选择(100,000,000)~= 2.27 * 10^2436455

N因此等于2.27 * 10^2436455,因此代码0表示0,0,0,…,0和代码2.27 * 10^2436455,一些变化表示999999999,99999999,…, 99999999。

为了存储从0到2.27 * 10^2436455的所有数字,您需要lg2(2.27 * 10^2436455) = 8.0937 * 10^6位。

1兆字节= 8388608比特> 8093700比特

这样看来,我们至少有足够的空间来存储结果!当然,有趣的部分是在数字流进来时进行排序。不确定最好的方法是我们有294908位剩余。我想一个有趣的技巧是在每个点都假设这是整个排序,找到该排序的代码,然后当你收到一个新数字时,返回并更新之前的代码。手,手,手。

你试过转换成十六进制吗?

我可以看到前后文件大小都有了很大的减小;然后,用自由空间分步计算。也许,再次转换为dec, order,十六进制,另一个块,转换为dec, order…

对不起. .我不知道是否可行

# for i in {1..10000};do echo $(od -N1 -An -i /dev/urandom) ; done > 10000numbers
# for i in $(cat 10000numbers ); do printf '%x\n' $i; done > 10000numbers_hex
# ls -lah total 100K
drwxr-xr-x  2 diego diego 4,0K oct 22 22:32 .
drwx------ 39 diego diego  12K oct 22 22:31 ..
-rw-r--r--  1 diego diego  29K oct 22 22:33 10000numbers_hex
-rw-r--r--  1 diego diego  35K oct 22 22:31 10000numbers

你最多要数到99,999,999,并在沿途标明1,000,000个站点。因此,可以使用位流进行解释,即1表示递增计数器,0表示输出数字。如果流中的前8位是00110010,到目前为止我们将有0,0,2,2,3。

Log (99,999,999 + 1,000,000) / Log(2) = 26.59。你的内存中有2^28位。你只需要用一半!

To represent the sorted array one can just store the first element and the difference between adjacent elements. In this way we are concerned with encoding 10^6 elements that can sum up to at most 10^8. Let's call this D. To encode the elements of D one can use a Huffman code. The dictionary for the Huffman code can be created on the go and the array updated every time a new item is inserted in the sorted array (insertion sort). Note that when the dictionary changes because of a new item the whole array should be updated to match the new encoding.

如果每个唯一元素的数量相等,则编码D中每个元素的平均比特数将最大化。比如元素d1 d2…, dN在D中各出现F次。在这种情况下(最坏的情况是输入序列中同时有0和10^8)我们有

sum(1<=i<=N) F. di = 10^8

在哪里

sum(1<=i<=N) F=10^6,或F=10^6/N,归一化频率将是p= F/10^=1/N

平均比特数为-log2(1/P) = log2(N)。在这种情况下,我们应该找到使n最大化的情况,这发生在di从0开始的连续数,或者di= i-1时

10 ^ 8 =(1 < =我< = N) f . di =(1 < =我< = N) (10 ^ 6 / N)(张)= (10 ^ 6 / N) N (N - 1) / 2

i.e.

N <= 201。在这种情况下,平均比特数是log2(201)=7.6511,这意味着我们将需要大约1字节的每个输入元素来保存排序的数组。注意,这并不意味着D一般不能有超过201个元素。它只是说明,如果D的元素是均匀分布的,那么D的唯一值不可能超过201个。

我们可以利用网络堆栈,在我们得到所有数字之前,按顺序发送数字。如果你发送1M的数据,TCP/IP会把它分解成1500字节的数据包,并按照目标发送。每个包将被赋予一个序列号。

我们可以用手来做。在填满内存之前,我们可以对现有的数据进行排序,并将列表发送给目标,但在每个数字周围的序列中留下空洞。然后用同样的方法处理第二个1/2的数字,使用序列中的这些洞。

远端的网络堆栈将按顺序组装结果数据流,然后将其提交给应用程序。

它使用网络来执行归并排序。这是一个完全的黑客,但我是受到之前列出的其他网络黑客的启发。