我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。
数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?
问答来源:
slashdot.org
cleaton.net
我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。
数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?
问答来源:
slashdot.org
cleaton.net
当前回答
下面是这类问题的一般解决方案:
一般程序
所采取的方法如下。该算法在一个32位字的缓冲区上操作。它在循环中执行以下过程:
We start with a buffer filled with compressed data from the last iteration. The buffer looks like this |compressed sorted|empty| Calculate the maximum amount of numbers that can be stored in this buffer, both compressed and uncompressed. Split the buffer into these two sections, beginning with the space for compressed data, ending with the uncompressed data. The buffer looks like |compressed sorted|empty|empty| Fill the uncompressed section with numbers to be sorted. The buffer looks like |compressed sorted|empty|uncompressed unsorted| Sort the new numbers with an in-place sort. The buffer looks like |compressed sorted|empty|uncompressed sorted| Right-align any already compressed data from the previous iteration in the compressed section. At this point the buffer is partitioned |empty|compressed sorted|uncompressed sorted| Perform a streaming decompression-recompression on the compressed section, merging in the sorted data in the uncompressed section. The old compressed section is consumed as the new compressed section grows. The buffer looks like |compressed sorted|empty|
执行此过程,直到所有数字都已排序。
压缩
当然,这种算法只有在知道实际要压缩什么之前,才有可能计算出新排序缓冲区的最终压缩大小。其次,压缩算法需要足够好来解决实际问题。
所使用的方法使用三个步骤。首先,算法将始终存储排序序列,因此我们可以只存储连续条目之间的差异。每个差值都在[0,99999999]的范围内。
这些差异随后被编码为一元比特流。这个流中的1表示“向累加器添加1,0表示“将累加器作为一个条目发出,并重置”。所以差N由N个1和1个0表示。
所有差异的和将接近算法支持的最大值,所有差异的计数将接近算法中插入的值的数量。这意味着我们期望流在最后包含最大值1和计数0。这允许我们计算流中0和1的期望概率。即,0的概率为count/(count+maxval), 1的概率为maxval/(count+maxval)。
我们使用这些概率来定义这个比特流上的算术编码模型。这个算术代码将在最佳空间中精确地编码1和0的数量。我们可以计算该模型对于任何中间位流所使用的空间:bits = encoded * log2(1 + amount / maxval) + maxval * log2(1 + maxval / amount)。若要计算算法所需的总空间,请将encoded设置为amount。
为了不需要大量的迭代,可以向缓冲区添加少量开销。这将确保算法将至少对适合这个开销的数量进行操作,因为到目前为止,算法最大的时间成本是每个周期的算术编码压缩和解压缩。
除此之外,在算术编码算法的定点近似中,存储簿记数据和处理轻微的不准确性是需要一些开销的,但总的来说,即使使用可以包含8000个数字的额外缓冲区,该算法也能够容纳1MiB的空间,总共1043916字节的空间。
最优
除了减少算法的开销外,理论上不可能得到更小的结果。为了仅仅包含最终结果的熵,1011717个字节是必要的。如果我们减去为提高效率而增加的额外缓冲区,该算法使用1011916字节来存储最终结果+开销。
其他回答
如果我们对这些数字一无所知,我们就会受到以下约束:
我们需要在排序之前加载所有的数字, 这组数字是不可压缩的。
如果这些假设成立,则无法执行您的任务,因为您将需要至少26,575,425位的存储空间(3,321,929字节)。
你能跟我们说说你的数据吗?
我认为解决方案是结合视频编码的技术,即离散余弦变换。在数字视频中,不是将视频的亮度或颜色的变化记录为常规值,如110 112 115 116,而是从最后一个中减去每一个(类似于运行长度编码)。110 112 115 116变成110 2 3 1。这些值,2,3 1比原始值需要更少的比特。
So lets say we create a list of the input values as they arrive on the socket. We are storing in each element, not the value, but the offset of the one before it. We sort as we go, so the offsets are only going to be positive. But the offset could be 8 decimal digits wide which this fits in 3 bytes. Each element can't be 3 bytes, so we need to pack these. We could use the top bit of each byte as a "continue bit", indicating that the next byte is part of the number and the lower 7 bits of each byte need to be combined. zero is valid for duplicates.
当列表填满时,数字之间的距离应该越来越近,这意味着平均只有1个字节用于确定到下一个值的距离。7位值和1位偏移(如果方便的话),但可能存在一个“继续”值需要少于8位的最佳点。
总之,我做了一些实验。我使用随机数生成器,我可以将100万个排序过的8位十进制数字放入大约1279000字节。每个数字之间的平均间隔始终是99…
public class Test {
public static void main(String[] args) throws IOException {
// 1 million values
int[] values = new int[1000000];
// create random values up to 8 digits lrong
Random random = new Random();
for (int x=0;x<values.length;x++) {
values[x] = random.nextInt(100000000);
}
Arrays.sort(values);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
int av = 0;
writeCompact(baos, values[0]); // first value
for (int x=1;x<values.length;x++) {
int v = values[x] - values[x-1]; // difference
av += v;
System.out.println(values[x] + " diff " + v);
writeCompact(baos, v);
}
System.out.println("Average offset " + (av/values.length));
System.out.println("Fits in " + baos.toByteArray().length);
}
public static void writeCompact(OutputStream os, long value) throws IOException {
do {
int b = (int) value & 0x7f;
value = (value & 0x7fffffffffffffffl) >> 7;
os.write(value == 0 ? b : (b | 0x80));
} while (value != 0);
}
}
排序在这里是次要问题。正如其他人所说,仅仅存储整数是困难的,并且不能在所有输入上工作,因为每个数字需要27位。
我对此的看法是:只存储连续(排序)整数之间的差异,因为它们很可能很小。然后使用压缩方案,例如,每个输入数字增加2位,来编码数字存储在多少位上。 喜欢的东西:
00 -> 5 bits
01 -> 11 bits
10 -> 19 bits
11 -> 27 bits
在给定的内存限制内,应该能够存储相当数量的可能输入列表。如何选择压缩方案以使其在最大输入数量上工作的数学超出了我的范围。
我希望您能够利用输入的领域特定知识,在此基础上找到足够好的整数压缩方案。
哦,然后,当你收到数据时,你对那个排序的列表进行插入排序。
我有一台有1M内存的电脑,没有其他本地存储
另一种作弊方法:你可以使用非本地(网络)存储代替(你的问题不排除这一点),调用一个网络服务,它可以使用直接的基于磁盘的归并排序(或者只需要足够的RAM来在内存中排序,因为你只需要接受1M的数字),而不需要(公认非常巧妙的)已经给出的解决方案。
这可能是作弊,但不清楚你是在寻找一个现实问题的解决方案,还是一个让人扭曲规则的谜题……如果是后者,那么简单的欺骗可能比复杂但“真实”的解决方案(正如其他人指出的那样,后者只能用于可压缩输入)得到更好的结果。
现在的目标是一个实际的解决方案,覆盖所有可能的情况下,输入在8位数范围内,只有1MB的RAM。注:工作正在进行中,明天继续。使用对已排序整型的增量进行算术编码,对于1M个已排序整型,最坏的情况是每个条目花费大约7位(因为99999999/1000000是99,而log2(99)几乎是7位)。
但是你需要将1m个整数排序到7位或8位!级数越短,delta就越大,因此每个元素的比特数就越多。
我正在努力尽可能多地压缩(几乎)在原地。第一批接近250K的整数最多每个需要大约9位。因此结果大约需要275KB。重复使用剩余的空闲内存几次。然后解压缩-就地合并-压缩这些压缩块。这很难,但也是可能的。我认为。
合并后的列表将越来越接近每整数7位的目标。但是我不知道合并循环需要多少次迭代。也许3。
但是算术编码实现的不精确性可能使它不可能实现。如果这个问题是可能的,它将是非常紧张的。
有志愿者吗?