我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

排序在这里是次要问题。正如其他人所说,仅仅存储整数是困难的,并且不能在所有输入上工作,因为每个数字需要27位。

我对此的看法是:只存储连续(排序)整数之间的差异,因为它们很可能很小。然后使用压缩方案,例如,每个输入数字增加2位,来编码数字存储在多少位上。 喜欢的东西:

00 -> 5 bits
01 -> 11 bits
10 -> 19 bits
11 -> 27 bits

在给定的内存限制内,应该能够存储相当数量的可能输入列表。如何选择压缩方案以使其在最大输入数量上工作的数学超出了我的范围。

我希望您能够利用输入的领域特定知识,在此基础上找到足够好的整数压缩方案。

哦,然后,当你收到数据时,你对那个排序的列表进行插入排序。

其他回答

如果输入流可以接收几次,这就容易多了(没有关于这方面的信息,想法和时间性能问题)。然后,我们可以数小数。有了计数值,就很容易生成输出流。通过计算值来压缩。 这取决于输入流中的内容。

我认为从组合学的角度来思考这个问题:有多少种可能的排序数字的组合?如果我们给出的组合是0,0,0 ....,0代码0,和0,0,0,…,1代码1,和999999999,99999999,…99999999是代码N, N是什么?换句话说,结果空间有多大?

Well, one way to think about this is noticing that this is a bijection of the problem of finding the number of monotonic paths in an N x M grid, where N = 1,000,000 and M = 100,000,000. In other words, if you have a grid that is 1,000,000 wide and 100,000,000 tall, how many shortest paths from the bottom left to the top right are there? Shortest paths of course require you only ever either move right or up (if you were to move down or left you would be undoing previously accomplished progress). To see how this is a bijection of our number sorting problem, observe the following:

您可以将路径中的任何水平支腿想象成排序中的一个数字,其中支腿的Y位置表示值。

所以如果路径只是向右移动一直到最后,然后一直跳到顶部,这相当于顺序为0,0,0,…,0。相反,如果它开始时一直跳到顶部,然后向右移动1,000,000次,这相当于999999999,99999999,……, 99999999。它向右移动一次,然后向上移动一次,然后向右移动一次,然后向上移动一次,等等,直到最后(然后必然会一直跳到顶部),相当于0,1,2,3,…,999999。

幸运的是,这个问题已经解决了,这样的网格有(N + M)个选择(M)条路径:

(1,000,000 + 100,000,000)选择(100,000,000)~= 2.27 * 10^2436455

N因此等于2.27 * 10^2436455,因此代码0表示0,0,0,…,0和代码2.27 * 10^2436455,一些变化表示999999999,99999999,…, 99999999。

为了存储从0到2.27 * 10^2436455的所有数字,您需要lg2(2.27 * 10^2436455) = 8.0937 * 10^6位。

1兆字节= 8388608比特> 8093700比特

这样看来,我们至少有足够的空间来存储结果!当然,有趣的部分是在数字流进来时进行排序。不确定最好的方法是我们有294908位剩余。我想一个有趣的技巧是在每个点都假设这是整个排序,找到该排序的代码,然后当你收到一个新数字时,返回并更新之前的代码。手,手,手。

基数树表示可以接近于处理这个问题,因为基数树利用了“前缀压缩”的优势。但是很难想象一个基树表表法可以在一个字节中表示单个节点——两个可能是极限。

但是,不管数据是如何表示的,一旦它被排序,它就可以以前缀压缩的形式存储,其中数字10、11和12将由001b、001b、001b表示,表示从前一个数字增加1。那么,也许10101b表示增量5,1101001b表示增量9,以此类推。

由于ROM大小不计算,因此除了TCP缓冲区外,不需要任何额外的RAM。只需要实现一个大的有限状态机。每个状态表示读入的多组数字。在读取了一百万个数字之后,只需打印出与所达到的状态相对应的数字。

您只需要按顺序存储数字之间的差异,并使用编码来压缩这些序列号。我们有2^23位。我们将它分成6位块,让最后一位表示这个数字是否扩展到另外6位(5位加上扩展块)。

因此,000010是1,000100是2。000001100000表示128。现在,我们考虑用最坏的类型来表示不超过10,000,000的数字序列的差异。可能有10000000 /2^5的差异大于2^5,10000000 /2^10的差异大于2^10,10000000 /2^15的差异大于2^15,等等。

所以,我们把表示这个序列所需要的比特数相加。我们有1,000,000*6 +汇总(10,000,000/2^5)*6+汇总(10,000,000/2^10)*6+汇总(10,000,000/2^15)*6+汇总(10,000,000/2^20)*4=7935479。

2^24 = 8388608。由于8388608 > 7935479,我们应该很容易有足够的内存。我们可能还需要一点内存来存储插入新数字时的和。然后我们遍历这个序列,找到插入新数字的位置,如果必要的话减少下一个差值,并将它之后的所有内容都右移。