我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

排序在这里是次要问题。正如其他人所说,仅仅存储整数是困难的,并且不能在所有输入上工作,因为每个数字需要27位。

我对此的看法是:只存储连续(排序)整数之间的差异,因为它们很可能很小。然后使用压缩方案,例如,每个输入数字增加2位,来编码数字存储在多少位上。 喜欢的东西:

00 -> 5 bits
01 -> 11 bits
10 -> 19 bits
11 -> 27 bits

在给定的内存限制内,应该能够存储相当数量的可能输入列表。如何选择压缩方案以使其在最大输入数量上工作的数学超出了我的范围。

我希望您能够利用输入的领域特定知识,在此基础上找到足够好的整数压缩方案。

哦,然后,当你收到数据时,你对那个排序的列表进行插入排序。

其他回答

我想试试基数树。如果可以将数据存储在树中,那么就可以执行顺序遍历来传输数据。

我不确定你是否能把它装进1MB,但我认为值得一试。

假设这个任务是可能的。在输出之前,内存中会有一个百万个排序数字的表示。有多少种不同的表示法?由于可能有重复的数字,我们不能使用nCr(选择),但有一种叫做multichoose的操作,它适用于多集。

在0..99,999,999范围内有22e2436455种方法来选择一百万个数字。 这需要8,093,730位来表示每个可能的组合,或1,011,717字节。

所以理论上是可能的,如果你能想出一个合理(足够)的数字排序表。例如,一个疯狂的表示可能需要一个10MB的查找表或数千行代码。

但是,如果“1M RAM”意味着100万个字节,那么显然没有足够的空间。事实上,多5%的内存使它在理论上成为可能,这对我来说意味着表示必须非常有效,可能是不理智的。

如果输入流可以接收几次,这就容易多了(没有关于这方面的信息,想法和时间性能问题)。然后,我们可以数小数。有了计数值,就很容易生成输出流。通过计算值来压缩。 这取决于输入流中的内容。

我有一台有1M内存的电脑,没有其他本地存储

另一种作弊方法:你可以使用非本地(网络)存储代替(你的问题不排除这一点),调用一个网络服务,它可以使用直接的基于磁盘的归并排序(或者只需要足够的RAM来在内存中排序,因为你只需要接受1M的数字),而不需要(公认非常巧妙的)已经给出的解决方案。

这可能是作弊,但不清楚你是在寻找一个现实问题的解决方案,还是一个让人扭曲规则的谜题……如果是后者,那么简单的欺骗可能比复杂但“真实”的解决方案(正如其他人指出的那样,后者只能用于可压缩输入)得到更好的结果。

请参阅第一个正确答案或后面带有算术编码的答案。下面你可能会发现一些有趣的,但不是100%防弹的解决方案。

这是一个非常有趣的任务,这里有另一个解决方案。我希望有人会觉得这个结果有用(或者至少有趣)。

阶段1:初始数据结构,粗略压缩方法,基本结果

Let's do some simple math: we have 1M (1048576 bytes) of RAM initially available to store 10^6 8 digit decimal numbers. [0;99999999]. So to store one number 27 bits are needed (taking the assumption that unsigned numbers will be used). Thus, to store a raw stream ~3.5M of RAM will be needed. Somebody already said it doesn't seem to be feasible, but I would say the task can be solved if the input is "good enough". Basically, the idea is to compress the input data with compression factor 0.29 or higher and do sorting in a proper manner.

让我们先解决压缩问题。有一些相关的测试已经可用:

http://www.theeggeadventure.com/wikimedia/index.php/Java_Data_Compression

“我运行了一个测试,压缩100万个连续整数使用 各种形式的压缩。结果如下:

None     4000027
Deflate  2006803
Filtered 1391833
BZip2    427067
Lzma     255040

看起来LZMA (Lempel-Ziv-Markov链算法)是一个很好的选择。我准备了一个简单的PoC,但仍有一些细节需要强调:

Memory is limited so the idea is to presort numbers and use compressed buckets (dynamic size) as temporary storage It is easier to achieve a better compression factor with presorted data, so there is a static buffer for each bucket (numbers from the buffer are to be sorted before LZMA) Each bucket holds a specific range, so the final sort can be done for each bucket separately Bucket's size can be properly set, so there will be enough memory to decompress stored data and do the final sort for each bucket separately

请注意,所附的代码是一个POC,它不能用作最终解决方案,它只是演示了使用几个较小的缓冲区以某种最佳方式(可能是压缩)存储预排序数字的想法。LZMA并不是最终的解决方案。它被用作向这个PoC引入压缩的最快方法。

请看下面的PoC代码(请注意它只是一个演示,要编译它将需要LZMA-Java):

public class MemorySortDemo {

static final int NUM_COUNT = 1000000;
static final int NUM_MAX   = 100000000;

static final int BUCKETS      = 5;
static final int DICT_SIZE    = 16 * 1024; // LZMA dictionary size
static final int BUCKET_SIZE  = 1024;
static final int BUFFER_SIZE  = 10 * 1024;
static final int BUCKET_RANGE = NUM_MAX / BUCKETS;

static class Producer {
    private Random random = new Random();
    public int produce() { return random.nextInt(NUM_MAX); }
}

static class Bucket {
    public int size, pointer;
    public int[] buffer = new int[BUFFER_SIZE];

    public ByteArrayOutputStream tempOut = new ByteArrayOutputStream();
    public DataOutputStream tempDataOut = new DataOutputStream(tempOut);
    public ByteArrayOutputStream compressedOut = new ByteArrayOutputStream();

    public void submitBuffer() throws IOException {
        Arrays.sort(buffer, 0, pointer);

        for (int j = 0; j < pointer; j++) {
            tempDataOut.writeInt(buffer[j]);
            size++;
        }            
        pointer = 0;
    }

    public void write(int value) throws IOException {
        if (isBufferFull()) {
            submitBuffer();
        }
        buffer[pointer++] = value;
    }

    public boolean isBufferFull() {
        return pointer == BUFFER_SIZE;
    }

    public byte[] compressData() throws IOException {
        tempDataOut.close();
        return compress(tempOut.toByteArray());
    }        

    private byte[] compress(byte[] input) throws IOException {
        final BufferedInputStream in = new BufferedInputStream(new ByteArrayInputStream(input));
        final DataOutputStream out = new DataOutputStream(new BufferedOutputStream(compressedOut));

        final Encoder encoder = new Encoder();
        encoder.setEndMarkerMode(true);
        encoder.setNumFastBytes(0x20);
        encoder.setDictionarySize(DICT_SIZE);
        encoder.setMatchFinder(Encoder.EMatchFinderTypeBT4);

        ByteArrayOutputStream encoderPrperties = new ByteArrayOutputStream();
        encoder.writeCoderProperties(encoderPrperties);
        encoderPrperties.flush();
        encoderPrperties.close();

        encoder.code(in, out, -1, -1, null);
        out.flush();
        out.close();
        in.close();

        return encoderPrperties.toByteArray();
    }

    public int[] decompress(byte[] properties) throws IOException {
        InputStream in = new ByteArrayInputStream(compressedOut.toByteArray());
        ByteArrayOutputStream data = new ByteArrayOutputStream(10 * 1024);
        BufferedOutputStream out = new BufferedOutputStream(data);

        Decoder decoder = new Decoder();
        decoder.setDecoderProperties(properties);
        decoder.code(in, out, 4 * size);

        out.flush();
        out.close();
        in.close();

        DataInputStream input = new DataInputStream(new ByteArrayInputStream(data.toByteArray()));
        int[] array = new int[size];
        for (int k = 0; k < size; k++) {
            array[k] = input.readInt();
        }

        return array;
    }
}

static class Sorter {
    private Bucket[] bucket = new Bucket[BUCKETS];

    public void doSort(Producer p, Consumer c) throws IOException {

        for (int i = 0; i < bucket.length; i++) {  // allocate buckets
            bucket[i] = new Bucket();
        }

        for(int i=0; i< NUM_COUNT; i++) {         // produce some data
            int value = p.produce();
            int bucketId = value/BUCKET_RANGE;
            bucket[bucketId].write(value);
            c.register(value);
        }

        for (int i = 0; i < bucket.length; i++) { // submit non-empty buffers
            bucket[i].submitBuffer();
        }

        byte[] compressProperties = null;
        for (int i = 0; i < bucket.length; i++) { // compress the data
            compressProperties = bucket[i].compressData();
        }

        printStatistics();

        for (int i = 0; i < bucket.length; i++) { // decode & sort buckets one by one
            int[] array = bucket[i].decompress(compressProperties);
            Arrays.sort(array);

            for(int v : array) {
                c.consume(v);
            }
        }
        c.finalCheck();
    }

    public void printStatistics() {
        int size = 0;
        int sizeCompressed = 0;

        for (int i = 0; i < BUCKETS; i++) {
            int bucketSize = 4*bucket[i].size;
            size += bucketSize;
            sizeCompressed += bucket[i].compressedOut.size();

            System.out.println("  bucket[" + i
                    + "] contains: " + bucket[i].size
                    + " numbers, compressed size: " + bucket[i].compressedOut.size()
                    + String.format(" compression factor: %.2f", ((double)bucket[i].compressedOut.size())/bucketSize));
        }

        System.out.println(String.format("Data size: %.2fM",(double)size/(1014*1024))
                + String.format(" compressed %.2fM",(double)sizeCompressed/(1014*1024))
                + String.format(" compression factor %.2f",(double)sizeCompressed/size));
    }
}

static class Consumer {
    private Set<Integer> values = new HashSet<>();

    int v = -1;
    public void consume(int value) {
        if(v < 0) v = value;

        if(v > value) {
            throw new IllegalArgumentException("Current value is greater than previous: " + v + " > " + value);
        }else{
            v = value;
            values.remove(value);
        }
    }

    public void register(int value) {
        values.add(value);
    }

    public void finalCheck() {
        System.out.println(values.size() > 0 ? "NOT OK: " + values.size() : "OK!");
    }
}

public static void main(String[] args) throws IOException {
    Producer p = new Producer();
    Consumer c = new Consumer();
    Sorter sorter = new Sorter();

    sorter.doSort(p, c);
}
}

对于随机数,它产生如下结果:

bucket[0] contains: 200357 numbers, compressed size: 353679 compression factor: 0.44
bucket[1] contains: 199465 numbers, compressed size: 352127 compression factor: 0.44
bucket[2] contains: 199682 numbers, compressed size: 352464 compression factor: 0.44
bucket[3] contains: 199949 numbers, compressed size: 352947 compression factor: 0.44
bucket[4] contains: 200547 numbers, compressed size: 353914 compression factor: 0.44
Data size: 3.85M compressed 1.70M compression factor 0.44

对于一个简单的升序序列(使用一个桶),它产生:

bucket[0] contains: 1000000 numbers, compressed size: 256700 compression factor: 0.06
Data size: 3.85M compressed 0.25M compression factor 0.06

EDIT

结论:

不要试图欺骗大自然 使用更简单的压缩和更低的内存占用 确实需要一些额外的线索。普通的防弹方案似乎并不可行。

第二阶段:强化压缩,最终结论

正如在前一节中已经提到的,任何合适的压缩技术都可以使用。因此,让我们摒弃LZMA,转而采用更简单、更好(如果可能的话)的方法。有很多好的解决方案,包括算术编码,基树等。

无论如何,简单但有用的编码方案将比另一个外部库更能说明问题,它提供了一些漂亮的算法。实际的解决方案非常简单:因为存在部分排序的数据桶,所以可以使用增量而不是数字。

随机输入测试结果稍好:

bucket[0] contains: 10103 numbers, compressed size: 13683 compression factor: 0.34
bucket[1] contains: 9885 numbers, compressed size: 13479 compression factor: 0.34
...
bucket[98] contains: 10026 numbers, compressed size: 13612 compression factor: 0.34
bucket[99] contains: 10058 numbers, compressed size: 13701 compression factor: 0.34
Data size: 3.85M compressed 1.31M compression factor 0.34

示例代码

  public static void encode(int[] buffer, int length, BinaryOut output) {
    short size = (short)(length & 0x7FFF);

    output.write(size);
    output.write(buffer[0]);

    for(int i=1; i< size; i++) {
        int next = buffer[i] - buffer[i-1];
        int bits = getBinarySize(next);

        int len = bits;

        if(bits > 24) {
          output.write(3, 2);
          len = bits - 24;
        }else if(bits > 16) {
          output.write(2, 2);
          len = bits-16;
        }else if(bits > 8) {
          output.write(1, 2);
          len = bits - 8;
        }else{
          output.write(0, 2);
        }

        if (len > 0) {
            if ((len % 2) > 0) {
                len = len / 2;
                output.write(len, 2);
                output.write(false);
            } else {
                len = len / 2 - 1;
                output.write(len, 2);
            }

            output.write(next, bits);
        }
    }
}

public static short decode(BinaryIn input, int[] buffer, int offset) {
    short length = input.readShort();
    int value = input.readInt();
    buffer[offset] = value;

    for (int i = 1; i < length; i++) {
        int flag = input.readInt(2);

        int bits;
        int next = 0;
        switch (flag) {
            case 0:
                bits = 2 * input.readInt(2) + 2;
                next = input.readInt(bits);
                break;
            case 1:
                bits = 8 + 2 * input.readInt(2) +2;
                next = input.readInt(bits);
                break;
            case 2:
                bits = 16 + 2 * input.readInt(2) +2;
                next = input.readInt(bits);
                break;
            case 3:
                bits = 24 + 2 * input.readInt(2) +2;
                next = input.readInt(bits);
                break;
        }

        buffer[offset + i] = buffer[offset + i - 1] + next;
    }

   return length;
}

请注意,这种方法:

不消耗大量内存 使用流 提供了不那么坏的结果

完整的代码可以在这里找到,BinaryInput和BinaryOutput实现可以在这里找到

最终结论

没有最终结论:)有时候,从元级别的角度来回顾一下任务,这确实是个好主意。

花点时间完成这个任务很有趣。顺便说一下,下面有很多有趣的答案。感谢您的关注和愉快的编码。