我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

你最多要数到99,999,999,并在沿途标明1,000,000个站点。因此,可以使用位流进行解释,即1表示递增计数器,0表示输出数字。如果流中的前8位是00110010,到目前为止我们将有0,0,2,2,3。

Log (99,999,999 + 1,000,000) / Log(2) = 26.59。你的内存中有2^28位。你只需要用一半!

其他回答

If it is possible to read the input file more than once (your problem statement doesn't say it can't), the following should work. It is described in Benchley's book "Programming Perls." If we store each number in 8 bytes we can store 250,000 numbers in one megabyte. Use a program that makes 40 passes over the input file. On the first pass it reads into memory any integer between 0 and 249,999, sorts the (at most) 250,000 integers and writes them to the output file. The second pass sorts the integers from 250,000 to 499,999 and so on to the 40th pass, which sorts 9,750,000 to 9,999,999.

现在的目标是一个实际的解决方案,覆盖所有可能的情况下,输入在8位数范围内,只有1MB的RAM。注:工作正在进行中,明天继续。使用对已排序整型的增量进行算术编码,对于1M个已排序整型,最坏的情况是每个条目花费大约7位(因为99999999/1000000是99,而log2(99)几乎是7位)。

但是你需要将1m个整数排序到7位或8位!级数越短,delta就越大,因此每个元素的比特数就越多。

我正在努力尽可能多地压缩(几乎)在原地。第一批接近250K的整数最多每个需要大约9位。因此结果大约需要275KB。重复使用剩余的空闲内存几次。然后解压缩-就地合并-压缩这些压缩块。这很难,但也是可能的。我认为。

合并后的列表将越来越接近每整数7位的目标。但是我不知道合并循环需要多少次迭代。也许3。

但是算术编码实现的不精确性可能使它不可能实现。如果这个问题是可能的,它将是非常紧张的。

有志愿者吗?

在10^8的范围内有10^6个值,所以平均每100个码点有一个值。存储第N个点到第(N+1)个点的距离。重复值的跳过值为0。这意味着跳跃平均需要7比特来存储,所以100万个跳跃将很适合我们的800万比特存储空间。

这些跳跃需要被编码成一个比特流,比如通过霍夫曼编码。插入是通过遍历比特流并在新值之后重写。通过遍历并写出隐含值来输出。出于实用性考虑,它可能被做成10^4个列表,每个列表包含10^4个代码点(平均100个值)。

随机数据的霍夫曼树可以通过假设跳跃长度上的泊松分布(均值=方差=100)先验地构建,但可以在输入上保留真实的统计数据,并用于生成处理病理病例的最佳树。

我们有1 MB - 3 KB RAM = 2^23 - 3*2^13位= 8388608 - 24576 = 8364032位可用。

我们给出10^8范围内的10^6个数。这给出了~100 < 2^7 = 128的平均差距

让我们首先考虑一个比较简单的问题,即当所有间距都< 128时,数字间距相当均匀。这很简单。只存储第一个数字和7位空白:

(27位)+ 10^6个7位间隔数=需要7000027位

注意重复的数字间隔为0。

但如果间隔大于127呢?

好吧,让我们直接表示小于127的间隙大小,但是127的间隙大小后面跟着一个连续的8位编码来表示实际的间隙长度:

 10xxxxxx xxxxxxxx                       = 127 .. 16,383
 110xxxxx xxxxxxxx xxxxxxxx              = 16384 .. 2,097,151

etc.

注意这个数字表示描述了它自己的长度,所以我们知道下一个间隙数何时开始。

对于小于127的小间隙,仍然需要7000027位。

可能有高达(10^8)/(2^7)= 781250个23位的间隙数,需要额外的16* 781250 = 12500,000位,这是太多了。我们需要一个更紧凑和缓慢增加的差距表示。

平均差距大小是100,所以如果我们把它们重新排序 [100, 99, 101, 98, 102,…], 2, 198, 1, 199, 0, 200, 201, 202,…] 然后用密集的二进制斐波那契基编码索引它,没有对零(例如,11011=8+5+2+1=16),数字用“00”分隔,然后我认为我们可以保持足够短的差距表示,但它需要更多的分析。

如果输入流可以接收几次,这就容易多了(没有关于这方面的信息,想法和时间性能问题)。然后,我们可以数小数。有了计数值,就很容易生成输出流。通过计算值来压缩。 这取决于输入流中的内容。