我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。
数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?
问答来源:
slashdot.org
cleaton.net
我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。
数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?
问答来源:
slashdot.org
cleaton.net
当前回答
谷歌的(坏)方法,从HN线程。存储rle风格的计数。
你的初始数据结构是“99999999:0”(都是零,没有看到任何数字),然后假设你看到了数字3,866,344,那么你的数据结构就变成了“3866343:0,1:1,96133654:0”,你可以看到数字总是在零位数和1位数之间交替,所以你可以假设奇数代表0位,偶数代表1位。这就变成了(3866343,1,96133654)
他们的问题似乎不包括副本,但让我们假设他们使用“0:1”来表示副本。
大问题#1:1M个整数的插入将花费很长时间。
大问题#2:像所有的普通增量编码解决方案一样,一些分布不能用这种方式覆盖。例如,1m整数,距离为0:99(例如,每个整数+99)。现在考虑相同的情况,但随机距离在0:99的范围内。(注:99999999/1000000 = 99.99)
谷歌的方法既不值得(缓慢),也不正确。但要为他们辩护,他们的问题可能略有不同。
其他回答
我们可以利用网络堆栈,在我们得到所有数字之前,按顺序发送数字。如果你发送1M的数据,TCP/IP会把它分解成1500字节的数据包,并按照目标发送。每个包将被赋予一个序列号。
我们可以用手来做。在填满内存之前,我们可以对现有的数据进行排序,并将列表发送给目标,但在每个数字周围的序列中留下空洞。然后用同样的方法处理第二个1/2的数字,使用序列中的这些洞。
远端的网络堆栈将按顺序组装结果数据流,然后将其提交给应用程序。
它使用网络来执行归并排序。这是一个完全的黑客,但我是受到之前列出的其他网络黑客的启发。
由于ROM大小不计算,因此除了TCP缓冲区外,不需要任何额外的RAM。只需要实现一个大的有限状态机。每个状态表示读入的多组数字。在读取了一百万个数字之后,只需打印出与所达到的状态相对应的数字。
我在这里的建议很大程度上归功于Dan的解决方案
首先,我假设解决方案必须处理所有可能的输入列表。我认为流行的答案并没有做出这样的假设(在我看来这是一个巨大的错误)。
众所周知,任何形式的无损压缩都不会减小所有输入的大小。
所有流行的答案都假设它们能够有效地应用压缩来允许它们有额外的空间。事实上,一个足够大的额外空间块,以未压缩的形式保存他们部分完成的列表的一部分,并允许他们执行排序操作。这只是一个糟糕的假设。
对于这样的解决方案,任何了解如何进行压缩的人都能够设计一些不能很好地压缩该方案的输入数据,并且“解决方案”很可能会由于空间不足而崩溃。
相反,我采用数学方法。我们可能的输出是所有长度为LEN的列表,由0..MAX范围内的元素组成。这里LEN是1,000,000,MAX是100,000,000。
对于任意的LEN和MAX,编码此状态所需的比特数为:
Log2(MAX multichoice LEN)
因此,对于我们的数字,一旦我们完成了接收和排序,我们将需要至少Log2(100,000,000 MC 1,000,000)位来存储我们的结果,以一种能够唯一区分所有可能输出的方式。
这是~= 988kb。所以我们有足够的空间来存放结果。从这个角度来看,这是可能的。
[删除了无意义的漫谈,现在有更好的例子…]
最好的答案在这里。
另一个很好的答案是这里,它基本上使用插入排序作为函数,将列表扩展为一个元素(缓冲一些元素并进行预先排序,以允许一次插入多个元素,节省一些时间)。使用一个很好的压缩状态编码,7位增量的桶
在接收流时执行这些步骤。
首先设置一些合理的块大小
伪代码思想:
The first step would be to find all the duplicates and stick them in a dictionary with its count and remove them. The third step would be to place number that exist in sequence of their algorithmic steps and place them in counters special dictionaries with the first number and their step like n, n+1..., n+2, 2n, 2n+1, 2n+2... Begin to compress in chunks some reasonable ranges of number like every 1000 or ever 10000 the remaining numbers that appear less often to repeat. Uncompress that range if a number is found and add it to the range and leave it uncompressed for a while longer. Otherwise just add that number to a byte[chunkSize]
在接收流时继续执行前4步。最后一步是,如果超出内存,则失败,或者在收集完所有数据后开始输出结果,即开始对范围进行排序,并按顺序输出结果,然后按需要解压缩的顺序解压结果,并在得到它们时对它们进行排序。
如果输入流可以接收几次,这将是很大的 更简单(没有关于这方面的信息,想法和时间-性能问题)。
然后,我们可以数小数。如果是计数值的话 容易使输出流。通过计算值来压缩。它 这取决于输入流中的内容。