我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
当前回答
如何使用map_函数和一个for循环?以下是我的解决方案:
list_to_df <- function(list_to_convert) {
tmp_data_frame <- data.frame()
for (i in 1:length(list_to_convert)) {
tmp <- map_dfr(list_to_convert[[i]], data.frame)
tmp_data_frame <- rbind(tmp_data_frame, tmp)
}
return(tmp_data_frame)
}
其中map_dfr将每个列表元素转换为data.frame,然后rbind将它们合并。
在你的情况下,我猜应该是:
converted_list <- list_to_df(l)
其他回答
尝试折叠::unlist2d ('unlist to data.frame'的简写):
l <- replicate(
132,
list(sample(letters, 20)),
simplify = FALSE
)
library(collapse)
head(unlist2d(l))
.id.1 .id.2 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
1 1 1 e x b d s p a c k z q m u l h n r t o y
2 2 1 r t i k m b h n s e p f o c x l g v a j
3 3 1 t r v z a u c o w f m b d g p q y e n k
4 4 1 x i e p f d q k h b j s z a t v y l m n
5 5 1 d z k y a p b h c v f m u l n q e i w j
6 6 1 l f s u o v p z q e r c h n a t m k y x
head(unlist2d(l, idcols = FALSE))
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
1 e x b d s p a c k z q m u l h n r t o y
2 r t i k m b h n s e p f o c x l g v a j
3 t r v z a u c o w f m b d g p q y e n k
4 x i e p f d q k h b j s z a t v y l m n
5 d z k y a p b h c v f m u l n q e i w j
6 l f s u o v p z q e r c h n a t m k y x
或者你可以使用tibble包(来自tidyverse):
#create examplelist
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
#package tidyverse
library(tidyverse)
#make a dataframe (or use as_tibble)
df <- as_data_frame(l,.name_repair = "unique")
2020年7月更新:
stringsAsFactors参数的默认值现在是default.stringsAsFactors(),它的默认值是FALSE。
假设你的列表的列表叫做l:
df <- data.frame(matrix(unlist(l), nrow=length(l), byrow=TRUE))
上面的代码会将所有的字符列转换为因子,为了避免这种情况,你可以在data.frame()调用中添加一个参数:
df <- data.frame(matrix(unlist(l), nrow=132, byrow=TRUE),stringsAsFactors=FALSE)
如何使用map_函数和一个for循环?以下是我的解决方案:
list_to_df <- function(list_to_convert) {
tmp_data_frame <- data.frame()
for (i in 1:length(list_to_convert)) {
tmp <- map_dfr(list_to_convert[[i]], data.frame)
tmp_data_frame <- rbind(tmp_data_frame, tmp)
}
return(tmp_data_frame)
}
其中map_dfr将每个列表元素转换为data.frame,然后rbind将它们合并。
在你的情况下,我猜应该是:
converted_list <- list_to_df(l)
假设你的列表是L,
data.frame(Reduce(rbind, L))