我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?

下面是一些示例数据:

l <- replicate(
  132,
  as.list(sample(letters, 20)),
  simplify = FALSE
)

当前回答

修正样本数据,使其符合原始描述“每个项目是一个长度为20的列表”

mylistlist <- replicate(
  132,
  as.list(sample(letters, 20)),
  simplify = FALSE
)

我们可以像这样把它转换成一个数据帧:

data.frame(t(sapply(mylistlist,c)))

Sapply将其转换为矩阵。 data.frame将矩阵转换为数据帧。

导致:

其他回答

你可以使用plyr包装。 例如表单的嵌套列表

l <- list(a = list(var.1 = 1, var.2 = 2, var.3 = 3)
      , b = list(var.1 = 4, var.2 = 5, var.3 = 6)
      , c = list(var.1 = 7, var.2 = 8, var.3 = 9)
      , d = list(var.1 = 10, var.2 = 11, var.3 = 12)
      )

现在长度为4,并且l中的每个列表包含另一个长度为3的列表。 现在你可以跑了

  library (plyr)
  df <- ldply (l, data.frame)

应该会得到和@Marek和@nico相同的结果。

对于像从嵌套JSON中获得的3级或更多级别的深度嵌套列表的一般情况:

{
"2015": {
  "spain": {"population": 43, "GNP": 9},
  "sweden": {"population": 7, "GNP": 6}},
"2016": {
  "spain": {"population": 45, "GNP": 10},
  "sweden": {"population": 9, "GNP": 8}}
}

考虑一下melt()将嵌套列表转换为高格式的方法:

myjson <- jsonlite:fromJSON(file("test.json"))
tall <- reshape2::melt(myjson)[, c("L1", "L2", "L3", "value")]
    L1     L2         L3 value
1 2015  spain population    43
2 2015  spain        GNP     9
3 2015 sweden population     7
4 2015 sweden        GNP     6
5 2016  spain population    45
6 2016  spain        GNP    10
7 2016 sweden population     9
8 2016 sweden        GNP     8

接着是dcast(),然后再次扩大到一个整洁的数据集,其中每个变量组成一个a列,每个观察值组成一行:

wide <- reshape2::dcast(tall, L1+L2~L3) 
# left side of the formula defines the rows/observations and the 
# right side defines the variables/measurements
    L1     L2 GNP population
1 2015  spain   9         43
2 2015 sweden   6          7
3 2016  spain  10         45
4 2016 sweden   8          9

2020年7月更新:

stringsAsFactors参数的默认值现在是default.stringsAsFactors(),它的默认值是FALSE。


假设你的列表的列表叫做l:

df <- data.frame(matrix(unlist(l), nrow=length(l), byrow=TRUE))

上面的代码会将所有的字符列转换为因子,为了避免这种情况,你可以在data.frame()调用中添加一个参数:

df <- data.frame(matrix(unlist(l), nrow=132, byrow=TRUE),stringsAsFactors=FALSE)

对于使用purrr系列解决方案的并行(多核,多会话等)解决方案,使用:

library (furrr)
plan(multisession) # see below to see which other plan() is the more efficient
myTibble <- future_map_dfc(l, ~.x)

其中l是列表。

要对最有效的计划()进行基准测试,您可以使用:

library(tictoc)
plan(sequential) # reference time
# plan(multisession) # benchamark plan() goes here. See ?plan().
tic()
myTibble <- future_map_dfc(l, ~.x)
toc()

扩展@Marek的回答:如果你想避免字符串变成因素和效率不是一个问题,尝试一下

do.call(rbind, lapply(your_list, data.frame, stringsAsFactors=FALSE))