我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
当前回答
对于像从嵌套JSON中获得的3级或更多级别的深度嵌套列表的一般情况:
{
"2015": {
"spain": {"population": 43, "GNP": 9},
"sweden": {"population": 7, "GNP": 6}},
"2016": {
"spain": {"population": 45, "GNP": 10},
"sweden": {"population": 9, "GNP": 8}}
}
考虑一下melt()将嵌套列表转换为高格式的方法:
myjson <- jsonlite:fromJSON(file("test.json"))
tall <- reshape2::melt(myjson)[, c("L1", "L2", "L3", "value")]
L1 L2 L3 value
1 2015 spain population 43
2 2015 spain GNP 9
3 2015 sweden population 7
4 2015 sweden GNP 6
5 2016 spain population 45
6 2016 spain GNP 10
7 2016 sweden population 9
8 2016 sweden GNP 8
接着是dcast(),然后再次扩大到一个整洁的数据集,其中每个变量组成一个a列,每个观察值组成一行:
wide <- reshape2::dcast(tall, L1+L2~L3)
# left side of the formula defines the rows/observations and the
# right side defines the variables/measurements
L1 L2 GNP population
1 2015 spain 9 43
2 2015 sweden 6 7
3 2016 spain 10 45
4 2016 sweden 8 9
其他回答
你可以使用plyr包装。 例如表单的嵌套列表
l <- list(a = list(var.1 = 1, var.2 = 2, var.3 = 3)
, b = list(var.1 = 4, var.2 = 5, var.3 = 6)
, c = list(var.1 = 7, var.2 = 8, var.3 = 9)
, d = list(var.1 = 10, var.2 = 11, var.3 = 12)
)
现在长度为4,并且l中的每个列表包含另一个长度为3的列表。 现在你可以跑了
library (plyr)
df <- ldply (l, data.frame)
应该会得到和@Marek和@nico相同的结果。
我也想提出这个解决方案。尽管它看起来与其他解决方案相似,但它使用了rbind。从胶合板包装填充。这在列表缺少列或NA值的情况下非常有利。
l <- replicate(10,as.list(sample(letters,10)),simplify = FALSE)
res<-data.frame()
for (i in 1:length(l))
res<-plyr::rbind.fill(res,data.frame(t(unlist(l[i]))))
res
如何使用map_函数和一个for循环?以下是我的解决方案:
list_to_df <- function(list_to_convert) {
tmp_data_frame <- data.frame()
for (i in 1:length(list_to_convert)) {
tmp <- map_dfr(list_to_convert[[i]], data.frame)
tmp_data_frame <- rbind(tmp_data_frame, tmp)
}
return(tmp_data_frame)
}
其中map_dfr将每个列表元素转换为data.frame,然后rbind将它们合并。
在你的情况下,我猜应该是:
converted_list <- list_to_df(l)
下面这个简单的命令对我有用:
myDf <- as.data.frame(myList)
参考(Quora的答案)
> myList <- list(a = c(1, 2, 3), b = c(4, 5, 6))
> myList
$a
[1] 1 2 3
$b
[1] 4 5 6
> myDf <- as.data.frame(myList)
a b
1 1 4
2 2 5
3 3 6
> class(myDf)
[1] "data.frame"
但如果不清楚如何将列表转换为数据帧,则会失败:
> myList <- list(a = c(1, 2, 3), b = c(4, 5, 6, 7))
> myDf <- as.data.frame(myList)
函数错误(…), row.names = NULL,检查。rows = FALSE, check.names = TRUE,: 参数暗示不同的行数:3,4
注意:答案是朝着问题的标题,可能会跳过问题的一些细节
包数据。Table中有rbindlist函数,它是do的一个超快速实现。调用(rbind列表(…))。
它可以接受一个列表的列表,data。frame或data。表作为输入。
library(data.table)
ll <- list(a = list(var.1 = 1, var.2 = 2, var.3 = 3)
, b = list(var.1 = 4, var.2 = 5, var.3 = 6)
, c = list(var.1 = 7, var.2 = 8, var.3 = 9)
, d = list(var.1 = 10, var.2 = 11, var.3 = 12)
)
DT <- rbindlist(ll)
这会返回一个数据。表继承自data.frame。
如果你真的想转换回data。frame使用as。data。frame(DT)