我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
当前回答
有时你的数据可能是相同长度的向量的列表。
lolov = list(list(c(1,2,3),c(4,5,6)), list(c(7,8,9),c(10,11,12),c(13,14,15)) )
(内部向量也可以是列表,但我简化了,使其更容易阅读)。
然后可以进行如下修改。记住,你可以一次取消一个级别:
lov = unlist(lolov, recursive = FALSE )
> lov
[[1]]
[1] 1 2 3
[[2]]
[1] 4 5 6
[[3]]
[1] 7 8 9
[[4]]
[1] 10 11 12
[[5]]
[1] 13 14 15
现在用其他答案中提到的你最喜欢的方法:
library(plyr)
>ldply(lov)
V1 V2 V3
1 1 2 3
2 4 5 6
3 7 8 9
4 10 11 12
5 13 14 15
其他回答
tibble包有一个函数enframe(),它通过将嵌套的列表对象强制转换为嵌套的tibble(“整齐的”数据帧)对象来解决这个问题。下面是R for Data Science的一个简单例子:
x <- list(
a = 1:5,
b = 3:4,
c = 5:6
)
df <- enframe(x)
df
#> # A tibble: 3 × 2
#> name value
#> <chr> <list>
#> 1 a <int [5]>
#> 2 b <int [2]>
#> 3 c <int [2]>
Since you have several nests in your list, l, you can use the unlist(recursive = FALSE) to remove unnecessary nesting to get just a single hierarchical list and then pass to enframe(). I use tidyr::unnest() to unnest the output into a single level "tidy" data frame, which has your two columns (one for the group name and one for the observations with the groups value). If you want columns that make wide, you can add a column using add_column() that just repeats the order of the values 132 times. Then just spread() the values.
library(tidyverse)
l <- replicate(
132,
list(sample(letters, 20)),
simplify = FALSE
)
l_tib <- l %>%
unlist(recursive = FALSE) %>%
enframe() %>%
unnest()
l_tib
#> # A tibble: 2,640 x 2
#> name value
#> <int> <chr>
#> 1 1 d
#> 2 1 z
#> 3 1 l
#> 4 1 b
#> 5 1 i
#> 6 1 j
#> 7 1 g
#> 8 1 w
#> 9 1 r
#> 10 1 p
#> # ... with 2,630 more rows
l_tib_spread <- l_tib %>%
add_column(index = rep(1:20, 132)) %>%
spread(key = index, value = value)
l_tib_spread
#> # A tibble: 132 x 21
#> name `1` `2` `3` `4` `5` `6` `7` `8` `9` `10` `11`
#> * <int> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 1 d z l b i j g w r p y
#> 2 2 w s h r i k d u a f j
#> 3 3 r v q s m u j p f a i
#> 4 4 o y x n p i f m h l t
#> 5 5 p w v d k a l r j q n
#> 6 6 i k w o c n m b v e q
#> 7 7 c d m i u o e z v g p
#> 8 8 f s e o p n k x c z h
#> 9 9 d g o h x i c y t f j
#> 10 10 y r f k d o b u i x s
#> # ... with 122 more rows, and 9 more variables: `12` <chr>, `13` <chr>,
#> # `14` <chr>, `15` <chr>, `16` <chr>, `17` <chr>, `18` <chr>,
#> # `19` <chr>, `20` <chr>
如果您的列表具有相同尺寸的元素,则可以使用来自tidyverse的bind_rows函数。
# Load the tidyverse
Library(tidyverse)
# make a list with elements having same dimensions
My_list <- list(a = c(1, 4, 5), b = c(9, 3, 8))
## Bind the rows
My_list %>% bind_rows()
结果是一个有两行的数据帧。
该方法使用一个tidyverse包(purrr)。
列表:
x <- as.list(mtcars)
将其转换为数据帧(更具体地说是tibble):
library(purrr)
map_df(x, ~.x)
编辑时间:2021年5月30日
这实际上可以通过dplyr中的bind_rows()函数实现。
x <- as.list(mtcars)
dplyr::bind_rows(x)
A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# ... with 22 more rows
更多的答案,以及这个问题的答案中的时间: 将列表转换为数据帧的最有效方法是什么?
最快的方法,不产生一个数据框架与列表,而不是向量的列似乎是(从马丁摩根的回答):
l <- list(list(col1="a",col2=1),list(col1="b",col2=2))
f = function(x) function(i) unlist(lapply(x, `[[`, i), use.names=FALSE)
as.data.frame(Map(f(l), names(l[[1]])))
下面这个简单的命令对我有用:
myDf <- as.data.frame(myList)
参考(Quora的答案)
> myList <- list(a = c(1, 2, 3), b = c(4, 5, 6))
> myList
$a
[1] 1 2 3
$b
[1] 4 5 6
> myDf <- as.data.frame(myList)
a b
1 1 4
2 2 5
3 3 6
> class(myDf)
[1] "data.frame"
但如果不清楚如何将列表转换为数据帧,则会失败:
> myList <- list(a = c(1, 2, 3), b = c(4, 5, 6, 7))
> myDf <- as.data.frame(myList)
函数错误(…), row.names = NULL,检查。rows = FALSE, check.names = TRUE,: 参数暗示不同的行数:3,4
注意:答案是朝着问题的标题,可能会跳过问题的一些细节