我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
当前回答
2020年7月更新:
stringsAsFactors参数的默认值现在是default.stringsAsFactors(),它的默认值是FALSE。
假设你的列表的列表叫做l:
df <- data.frame(matrix(unlist(l), nrow=length(l), byrow=TRUE))
上面的代码会将所有的字符列转换为因子,为了避免这种情况,你可以在data.frame()调用中添加一个参数:
df <- data.frame(matrix(unlist(l), nrow=132, byrow=TRUE),stringsAsFactors=FALSE)
其他回答
更多的答案,以及这个问题的答案中的时间: 将列表转换为数据帧的最有效方法是什么?
最快的方法,不产生一个数据框架与列表,而不是向量的列似乎是(从马丁摩根的回答):
l <- list(list(col1="a",col2=1),list(col1="b",col2=2))
f = function(x) function(i) unlist(lapply(x, `[[`, i), use.names=FALSE)
as.data.frame(Map(f(l), names(l[[1]])))
根据列表的结构,有一些tidyverse选项可以很好地处理长度不等的列表:
l <- list(a = list(var.1 = 1, var.2 = 2, var.3 = 3)
, b = list(var.1 = 4, var.2 = 5)
, c = list(var.1 = 7, var.3 = 9)
, d = list(var.1 = 10, var.2 = 11, var.3 = NA))
df <- dplyr::bind_rows(l)
df <- purrr::map_df(l, dplyr::bind_rows)
df <- purrr::map_df(l, ~.x)
# all create the same data frame:
# A tibble: 4 x 3
var.1 var.2 var.3
<dbl> <dbl> <dbl>
1 1 2 3
2 4 5 NA
3 7 NA 9
4 10 11 NA
你也可以混合向量和数据帧:
library(dplyr)
bind_rows(
list(a = 1, b = 2),
data_frame(a = 3:4, b = 5:6),
c(a = 7)
)
# A tibble: 4 x 2
a b
<dbl> <dbl>
1 1 2
2 3 5
3 4 6
4 7 NA
我也想提出这个解决方案。尽管它看起来与其他解决方案相似,但它使用了rbind。从胶合板包装填充。这在列表缺少列或NA值的情况下非常有利。
l <- replicate(10,as.list(sample(letters,10)),simplify = FALSE)
res<-data.frame()
for (i in 1:length(l))
res<-plyr::rbind.fill(res,data.frame(t(unlist(l[i]))))
res
一个简短的(但可能不是最快的)方法是使用基底r,因为数据帧只是一个长度相等的向量的列表。因此,你的输入列表和一个30 x 132 data.frame之间的转换将是:
df <- data.frame(l)
从这里我们可以将其转置为132 x 30的矩阵,并将其转换回数据帧:
new_df <- data.frame(t(df))
一句话:
new_df <- data.frame(t(data.frame(l)))
行名看起来很讨厌,但是您总是可以用
行名称(new_df) <- 1:nrow(new_df)
或者你可以使用tibble包(来自tidyverse):
#create examplelist
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
#package tidyverse
library(tidyverse)
#make a dataframe (or use as_tibble)
df <- as_data_frame(l,.name_repair = "unique")