我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
当前回答
一个简短的(但可能不是最快的)方法是使用基底r,因为数据帧只是一个长度相等的向量的列表。因此,你的输入列表和一个30 x 132 data.frame之间的转换将是:
df <- data.frame(l)
从这里我们可以将其转置为132 x 30的矩阵,并将其转换回数据帧:
new_df <- data.frame(t(df))
一句话:
new_df <- data.frame(t(data.frame(l)))
行名看起来很讨厌,但是您总是可以用
行名称(new_df) <- 1:nrow(new_df)
其他回答
更多的答案,以及这个问题的答案中的时间: 将列表转换为数据帧的最有效方法是什么?
最快的方法,不产生一个数据框架与列表,而不是向量的列似乎是(从马丁摩根的回答):
l <- list(list(col1="a",col2=1),list(col1="b",col2=2))
f = function(x) function(i) unlist(lapply(x, `[[`, i), use.names=FALSE)
as.data.frame(Map(f(l), names(l[[1]])))
我发现的每个解决方案似乎只适用于列表中的每个对象都具有相同的长度。当列表中对象的长度不相等时,我需要将列表转换为data.frame。下面是我提出的基于R的解决方案。毫无疑问,这是非常低效的,但它似乎确实有效。
x1 <- c(2, 13)
x2 <- c(2, 4, 6, 9, 11, 13)
x3 <- c(1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13)
my.results <- list(x1, x2, x3)
# identify length of each list
my.lengths <- unlist(lapply(my.results, function (x) { length(unlist(x))}))
my.lengths
#[1] 2 6 20
# create a vector of values in all lists
my.values <- as.numeric(unlist(c(do.call(rbind, lapply(my.results, as.data.frame)))))
my.values
#[1] 2 13 2 4 6 9 11 13 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10 11 11 12 13 13
my.matrix <- matrix(NA, nrow = max(my.lengths), ncol = length(my.lengths))
my.cumsum <- cumsum(my.lengths)
mm <- 1
for(i in 1:length(my.lengths)) {
my.matrix[1:my.lengths[i],i] <- my.values[mm:my.cumsum[i]]
mm <- my.cumsum[i]+1
}
my.df <- as.data.frame(my.matrix)
my.df
# V1 V2 V3
#1 2 2 1
#2 13 4 1
#3 NA 6 2
#4 NA 9 3
#5 NA 11 3
#6 NA 13 4
#7 NA NA 5
#8 NA NA 5
#9 NA NA 6
#10 NA NA 7
#11 NA NA 7
#12 NA NA 8
#13 NA NA 9
#14 NA NA 9
#15 NA NA 10
#16 NA NA 11
#17 NA NA 11
#18 NA NA 12
#19 NA NA 13
#20 NA NA 13
或者你可以使用tibble包(来自tidyverse):
#create examplelist
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
#package tidyverse
library(tidyverse)
#make a dataframe (or use as_tibble)
df <- as_data_frame(l,.name_repair = "unique")
如果您的列表具有相同尺寸的元素,则可以使用来自tidyverse的bind_rows函数。
# Load the tidyverse
Library(tidyverse)
# make a list with elements having same dimensions
My_list <- list(a = c(1, 4, 5), b = c(9, 3, 8))
## Bind the rows
My_list %>% bind_rows()
结果是一个有两行的数据帧。
你可以使用plyr包装。 例如表单的嵌套列表
l <- list(a = list(var.1 = 1, var.2 = 2, var.3 = 3)
, b = list(var.1 = 4, var.2 = 5, var.3 = 6)
, c = list(var.1 = 7, var.2 = 8, var.3 = 9)
, d = list(var.1 = 10, var.2 = 11, var.3 = 12)
)
现在长度为4,并且l中的每个列表包含另一个长度为3的列表。 现在你可以跑了
library (plyr)
df <- ldply (l, data.frame)
应该会得到和@Marek和@nico相同的结果。