我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。

给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627

我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。

面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。


当前回答

关于如何做到这一点,请参阅Knuth的“计算机编程艺术:生成所有排列”(.ps.gz)中的“算法L”。

其他回答

你的想法

我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。

其实还不错。您不仅要考虑最后一位数字,还要考虑所有比当前考虑的不那么重要的数字。在此之前,我们有一个单调的数字序列,即最右边的数字比它右边的邻居小。把

1234675
    ^

下一个有相同数字的大数是

1234756

将找到的数字交换为最后一位数字(考虑的数字中最小的数字),其余数字按递增顺序排列。

下面是Python中的一个紧凑(但部分是蛮力)解决方案

def findnext(ii): return min(v for v in (int("".join(x)) for x in
    itertools.permutations(str(ii))) if v>ii)

在c++中,你可以这样排列:https://stackoverflow.com/a/9243091/1149664(它与itertools中的算法相同)

以下是Weeble和BlueRaja描述的顶部答案的实现(其他答案)。我怀疑还有什么更好的办法。

def findnext(ii):
    iis=list(map(int,str(ii)))
    for i in reversed(range(len(iis))):
        if i == 0: return ii
        if iis[i] > iis[i-1] :
            break        
    left,right=iis[:i],iis[i:]
    for k in reversed(range(len(right))):
        if right[k]>left[-1]:
           right[k],left[-1]=left[-1],right[k]
           break
    return int("".join(map(str,(left+sorted(right)))))

只是使用python的另一个解决方案:

def PermutationStep(num):
    if sorted(list(str(num)), reverse=True) == list(str(num)):
        return -1
    ls = list(str(num))
    n = 0
    inx = 0
    for ind, i in enumerate(ls[::-1]):
        if i < n:
            n = i
            inx = -(ind + 1)
            break
        n = i
    ls[inx], ls[inx + 1] = ls[inx + 1], ls[inx]

    nl = ls[inx::-1][::-1]
    ln = sorted(ls[inx+1:])
    return ''.join(nl) + ''.join(ln)

print PermutationStep(23514)

输出:

23541

我只测试了两个数字。他们工作。 在去年12月退休之前,我做了8年的IT经理,我关心三件事: 1)准确性:如果它总是有效,那就很好。 2)速度:用户可以接受。 3)明确:我可能没有你聪明,但我付你薪水。确保你用英语解释你在做什么。

奥马尔,祝你好运。

Sub Main()

Dim Base(0 To 9) As Long
Dim Test(0 To 9) As Long

Dim i As Long
Dim j As Long
Dim k As Long
Dim ctr As Long

Const x As Long = 776914648
Dim y As Long
Dim z As Long

Dim flag As Boolean

' Store the digit count for the original number in the Base vector.
    For i = 0 To 9
        ctr = 0
        For j = 1 To Len(CStr(x))
            If Mid$(CStr(x), j, 1) = i Then ctr = ctr + 1
        Next j
        Base(i) = ctr
    Next i

' Start comparing from the next highest number.
    y = x + 1
    Do

' Store the digit count for the each new number in the Test vector.
        flag = False
        For i = 0 To 9
            ctr = 0
            For j = 1 To Len(CStr(y))
                If Mid$(CStr(y), j, 1) = i Then ctr = ctr + 1
            Next j
            Test(i) = ctr
        Next i

' Compare the digit counts.
        For k = 0 To 9
            If Test(k) <> Base(k) Then flag = True
        Next k

' If no match, INC and repeat.
        If flag = True Then
            y = y + 1
            Erase Test()
        Else
            z = y ' Match.
        End If

    Loop Until z > 0

    MsgBox (z), , "Solution"

End Sub

在Java中,这个算法比这个算法更简洁

   public static int permutate2(int number){
        String[] numArray = String.valueOf(number).split("");

        for(int i = numArray.length - 1; i > 0; i--){
            int current = Integer.valueOf(numArray[i]);
            int previous = Integer.valueOf(numArray[i - 1]);

            if(previous < current){
                String[] rest = String.valueOf(number).substring(i, numArray.length).split("");
                Arrays.sort(rest);

                String picker = rest[0];
                int pickerIndex = 0;
                for(int n = 0; n < rest.length ; n++){
                    if(Integer.valueOf(rest[n]) > previous){
                        picker = rest[n];
                        pickerIndex = n;
                        break;
                    }
                }
                numArray[i - 1] = picker;
                rest[pickerIndex] = String.valueOf(previous);
                Arrays.sort(rest);

                String newNumber = "";
                for(int z = 0; z <= i - 1; z++){
                    newNumber += numArray[z];
                }
                for(String z : rest){
                    newNumber += z;
                }

                return Integer.valueOf(newNumber);
            }
        }

        return number;
   }