我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。

给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627

我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。

面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。


当前回答

#include<stdio.h>
#include<cstring>
#include<iostream>
#include<string.h>
#include<sstream>
#include<iostream>

using namespace std;
int compare (const void * a, const void * b)
{
    return *(char*)a-*(char*)b;
}

/*-----------------------------------------------*/

int main()
{
    char number[200],temp;
    cout<<"please enter your number?"<<endl;
    gets(number);
    int n=strlen(number),length;
    length=n;
    while(--n>0)
    {
        if(number[n-1]<number[n])
        {
            for(int i=length-1;i>=n;i--)
            {
                if(number[i]>number[n-1])
                {
                    temp=number[i];
                    number[i]=number[n-1];
                    number[n-1]=temp;
                    break;
                }
            }
            qsort(number+n,length-n,sizeof(char),compare);
            puts(number); 
            return 0;
        }
    }
    cout<<"sorry itz the greatest one :)"<<endl;
}

其他回答

如果你用c++编程,你可以使用next_permutation:

#include <algorithm>
#include <string>
#include <iostream>

int main(int argc, char **argv) {
  using namespace std; 
   string x;
   while (cin >> x) {
    cout << x << " -> ";
    next_permutation(x.begin(),x.end());
    cout << x << "\n";
  }
  return 0;
}

给定n位数字加9。然后检查它是否在限制范围内(第一个(n+1)位数)。如果是,则检查新号码中的数字是否与原号码中的数字相同。 重复加9,直到两个条件都为真。 当数字超过限制时停止算法。

对于这种方法,我想不出一个与之相矛盾的测试用例。

下面是生成一个数字的所有排列的代码..不过必须先使用string . valueof (integer)将该整数转换为字符串。

/**
 * 
 * Inserts a integer at any index around string.
 * 
 * @param number
 * @param position
 * @param item
 * @return
 */
public String insertToNumberStringAtPosition(String number, int position,
        int item) {
    String temp = null;
    if (position >= number.length()) {
        temp = number + item;
    } else {
        temp = number.substring(0, position) + item
                + number.substring(position, number.length());
    }
    return temp;
}

/**
 * To generate permutations of a number.
 * 
 * @param number
 * @return
 */
public List<String> permuteNumber(String number) {
    List<String> permutations = new ArrayList<String>();
    if (number.length() == 1) {
        permutations.add(number);
        return permutations;
    }
    // else
    int inserterDig = (int) (number.charAt(0) - '0');
    Iterator<String> iterator = permuteNumber(number.substring(1))
            .iterator();
    while (iterator.hasNext()) {
        String subPerm = iterator.next();
        for (int dig = 0; dig <= subPerm.length(); dig++) {
            permutations.add(insertToNumberStringAtPosition(subPerm, dig,
                    inserterDig));
        }
    }
    return permutations;
}

I didn't know anything about the brute force algorithm when answering this question, so I approached it from another angle. I decided to search the entire range of possible solutions that this number could possibly be rearranged into, starting from the number_given+1 up to the max number available (999 for a 3 digit number, 9999 for 4 digits, etc.). I did this kind of like finding a palindrome with words, by sorting the numbers of each solution and comparing it to the sorted number given as the parameter. I then simply returned the first solution in the array of solutions, as this would be the next possible value.

下面是我的Ruby代码:

def PermutationStep(num)

    a = []
    (num.to_s.length).times { a.push("9") }
    max_num = a.join('').to_i
    verify = num.to_s.split('').sort
    matches = ((num+1)..max_num).select {|n| n.to_s.split('').sort == verify }

    if matches.length < 1
      return -1
    else
      matches[0]
    end
end

这是我在Ruby中的实现:

def foo num  
  num = num.to_s.chars.map(&:to_i)
  return num.join.to_i if num.size < 2
  for left in (num.size-2).downto(0) do
    for right in (num.size-1).downto(left+1) do
      if num[right]>num[left]
        num[left],num[right] = num[right],num[left]        
        return (num[0..left] + num[left+1..num.size-1].sort).join.to_i
      end
    end
  end
  return num.join.to_i
end

p foo 38276 
#will print: 38627