我有一个文件,不同的值的一些概率,例如:
1 0.1
2 0.05
3 0.05
4 0.2
5 0.4
6 0.2
我想用这个分布生成随机数。是否存在处理此问题的现有模块?自己编写代码是相当简单的(构建累积密度函数,生成一个随机值[0,1]并选择相应的值),但这似乎应该是一个常见的问题,可能有人已经为它创建了一个函数/模块。
我需要这个,因为我想生成一个生日列表(它不遵循标准随机模块中的任何分布)。
我有一个文件,不同的值的一些概率,例如:
1 0.1
2 0.05
3 0.05
4 0.2
5 0.4
6 0.2
我想用这个分布生成随机数。是否存在处理此问题的现有模块?自己编写代码是相当简单的(构建累积密度函数,生成一个随机值[0,1]并选择相应的值),但这似乎应该是一个常见的问题,可能有人已经为它创建了一个函数/模块。
我需要这个,因为我想生成一个生日列表(它不遵循标准随机模块中的任何分布)。
当前回答
scipy.stats。Rv_discrete可能是您想要的。您可以通过values参数提供您的概率。然后,您可以使用分布对象的rvs()方法来生成随机数。
正如Eugene Pakhomov在评论中指出的那样,你也可以将p关键字参数传递给numpy.random.choice(),例如:
numpy.random.choice(numpy.arange(1, 7), p=[0.1, 0.05, 0.05, 0.2, 0.4, 0.2])
如果你使用的是Python 3.6或更高版本,你可以使用标准库中的random.choices() -请参阅Mark Dickinson的回答。
其他回答
根据物品的重量列出一个清单:
items = [1, 2, 3, 4, 5, 6]
probabilities= [0.1, 0.05, 0.05, 0.2, 0.4, 0.2]
# if the list of probs is normalized (sum(probs) == 1), omit this part
prob = sum(probabilities) # find sum of probs, to normalize them
c = (1.0)/prob # a multiplier to make a list of normalized probs
probabilities = map(lambda x: c*x, probabilities)
print probabilities
ml = max(probabilities, key=lambda x: len(str(x)) - str(x).find('.'))
ml = len(str(ml)) - str(ml).find('.') -1
amounts = [ int(x*(10**ml)) for x in probabilities]
itemsList = list()
for i in range(0, len(items)): # iterate through original items
itemsList += items[i:i+1]*amounts[i]
# choose from itemsList randomly
print itemsList
优化可能是用最大公约数归一化,使目标列表更小。
另外,这可能会很有趣。
(好吧,我知道你想要薄膜包装,但也许这些自制的解决方案对你来说不够简洁。: -)
pdf = [(1, 0.1), (2, 0.05), (3, 0.05), (4, 0.2), (5, 0.4), (6, 0.2)]
cdf = [(i, sum(p for j,p in pdf if j < i)) for i,_ in pdf]
R = max(i for r in [random.random()] for i,c in cdf if c <= r)
我伪确认,这是通过目测这个表达式的输出:
sorted(max(i for r in [random.random()] for i,c in cdf if c <= r)
for _ in range(1000))
我写了一个从自定义连续分布中抽取随机样本的解决方案。
我需要这个类似于你的用例(即生成随机日期与给定的概率分布)。
你只需要函数random_custDist和行samples=random_custDist(x0,x1,custDist=custDist,size=1000)。其余的都是装饰^^。
import numpy as np
#funtion
def random_custDist(x0,x1,custDist,size=None, nControl=10**6):
#genearte a list of size random samples, obeying the distribution custDist
#suggests random samples between x0 and x1 and accepts the suggestion with probability custDist(x)
#custDist noes not need to be normalized. Add this condition to increase performance.
#Best performance for max_{x in [x0,x1]} custDist(x) = 1
samples=[]
nLoop=0
while len(samples)<size and nLoop<nControl:
x=np.random.uniform(low=x0,high=x1)
prop=custDist(x)
assert prop>=0 and prop<=1
if np.random.uniform(low=0,high=1) <=prop:
samples += [x]
nLoop+=1
return samples
#call
x0=2007
x1=2019
def custDist(x):
if x<2010:
return .3
else:
return (np.exp(x-2008)-1)/(np.exp(2019-2007)-1)
samples=random_custDist(x0,x1,custDist=custDist,size=1000)
print(samples)
#plot
import matplotlib.pyplot as plt
#hist
bins=np.linspace(x0,x1,int(x1-x0+1))
hist=np.histogram(samples, bins )[0]
hist=hist/np.sum(hist)
plt.bar( (bins[:-1]+bins[1:])/2, hist, width=.96, label='sample distribution')
#dist
grid=np.linspace(x0,x1,100)
discCustDist=np.array([custDist(x) for x in grid]) #distrete version
discCustDist*=1/(grid[1]-grid[0])/np.sum(discCustDist)
plt.plot(grid,discCustDist,label='custom distribustion (custDist)', color='C1', linewidth=4)
#decoration
plt.legend(loc=3,bbox_to_anchor=(1,0))
plt.show()
这个解决方案的性能肯定是可以改进的,但我更喜欢可读性。
从Python 3.6开始,Python的标准库中就有了一个解决方案,即random.choices。
示例用法:让我们建立一个与OP问题中匹配的总体和权重:
>>> from random import choices
>>> population = [1, 2, 3, 4, 5, 6]
>>> weights = [0.1, 0.05, 0.05, 0.2, 0.4, 0.2]
现在choices(population, weights)生成一个样本,包含在一个长度为1的列表中:
>>> choices(population, weights)
[4]
可选的仅关键字参数k允许一次请求多个示例。这很有价值,因为有些准备工作是随机的。在生成样本之前,每次调用choice函数都要做的事情;通过一次生成多个样本,我们只需要做一次准备工作。这里我们生成一百万个样本,并使用集合。计数器来检查我们得到的分布是否与我们给出的权重大致匹配。
>>> million_samples = choices(population, weights, k=10**6)
>>> from collections import Counter
>>> Counter(million_samples)
Counter({5: 399616, 6: 200387, 4: 200117, 1: 99636, 3: 50219, 2: 50025})
你可能想看看NumPy随机抽样分布