我有一个文件,不同的值的一些概率,例如:
1 0.1
2 0.05
3 0.05
4 0.2
5 0.4
6 0.2
我想用这个分布生成随机数。是否存在处理此问题的现有模块?自己编写代码是相当简单的(构建累积密度函数,生成一个随机值[0,1]并选择相应的值),但这似乎应该是一个常见的问题,可能有人已经为它创建了一个函数/模块。
我需要这个,因为我想生成一个生日列表(它不遵循标准随机模块中的任何分布)。
我有一个文件,不同的值的一些概率,例如:
1 0.1
2 0.05
3 0.05
4 0.2
5 0.4
6 0.2
我想用这个分布生成随机数。是否存在处理此问题的现有模块?自己编写代码是相当简单的(构建累积密度函数,生成一个随机值[0,1]并选择相应的值),但这似乎应该是一个常见的问题,可能有人已经为它创建了一个函数/模块。
我需要这个,因为我想生成一个生日列表(它不遵循标准随机模块中的任何分布)。
当前回答
也许有点晚了。但是你可以使用numpy.random.choice(),传递p参数:
val = numpy.random.choice(numpy.arange(1, 7), p=[0.1, 0.05, 0.05, 0.2, 0.4, 0.2])
其他回答
这些答案都不是特别明确或简单的。
这里有一个明确、简单、保证有效的方法。
accumulate_normalize_probability接受一个字典p,将符号映射到概率或频率。它输出可用的元组列表,从中进行选择。
def accumulate_normalize_values(p):
pi = p.items() if isinstance(p,dict) else p
accum_pi = []
accum = 0
for i in pi:
accum_pi.append((i[0],i[1]+accum))
accum += i[1]
if accum == 0:
raise Exception( "You are about to explode the universe. Continue ? Y/N " )
normed_a = []
for a in accum_pi:
normed_a.append((a[0],a[1]*1.0/accum))
return normed_a
收益率:
>>> accumulate_normalize_values( { 'a': 100, 'b' : 300, 'c' : 400, 'd' : 200 } )
[('a', 0.1), ('c', 0.5), ('b', 0.8), ('d', 1.0)]
为什么它有效
累积步骤将每个符号转换为它自身与前一个符号的概率或频率之间的间隔(或第一个符号的情况为0)。这些间隔可以通过简单地遍历列表,直到间隔0.0 -> 1.0(前面准备的)中的随机数小于或等于当前符号的间隔终点来进行选择(从而对所提供的分布进行抽样)。
规范化使我们不再需要确保所有内容的总和为某个值。归一化后,概率的“向量”总和为1.0。
从分布中选择和生成任意长样本的其余代码如下:
def select(symbol_intervals,random):
print symbol_intervals,random
i = 0
while random > symbol_intervals[i][1]:
i += 1
if i >= len(symbol_intervals):
raise Exception( "What did you DO to that poor list?" )
return symbol_intervals[i][0]
def gen_random(alphabet,length,probabilities=None):
from random import random
from itertools import repeat
if probabilities is None:
probabilities = dict(zip(alphabet,repeat(1.0)))
elif len(probabilities) > 0 and isinstance(probabilities[0],(int,long,float)):
probabilities = dict(zip(alphabet,probabilities)) #ordered
usable_probabilities = accumulate_normalize_values(probabilities)
gen = []
while len(gen) < length:
gen.append(select(usable_probabilities,random()))
return gen
用法:
>>> gen_random (['a','b','c','d'],10,[100,300,400,200])
['d', 'b', 'b', 'a', 'c', 'c', 'b', 'c', 'c', 'c'] #<--- some of the time
另一个答案,可能更快:)
distribution = [(1, 0.2), (2, 0.3), (3, 0.5)]
# init distribution
dlist = []
sumchance = 0
for value, chance in distribution:
sumchance += chance
dlist.append((value, sumchance))
assert sumchance == 1.0 # not good assert because of float equality
# get random value
r = random.random()
# for small distributions use lineair search
if len(distribution) < 64: # don't know exact speed limit
for value, sumchance in dlist:
if r < sumchance:
return value
else:
# else (not implemented) binary search algorithm
根据物品的重量列出一个清单:
items = [1, 2, 3, 4, 5, 6]
probabilities= [0.1, 0.05, 0.05, 0.2, 0.4, 0.2]
# if the list of probs is normalized (sum(probs) == 1), omit this part
prob = sum(probabilities) # find sum of probs, to normalize them
c = (1.0)/prob # a multiplier to make a list of normalized probs
probabilities = map(lambda x: c*x, probabilities)
print probabilities
ml = max(probabilities, key=lambda x: len(str(x)) - str(x).find('.'))
ml = len(str(ml)) - str(ml).find('.') -1
amounts = [ int(x*(10**ml)) for x in probabilities]
itemsList = list()
for i in range(0, len(items)): # iterate through original items
itemsList += items[i:i+1]*amounts[i]
# choose from itemsList randomly
print itemsList
优化可能是用最大公约数归一化,使目标列表更小。
另外,这可能会很有趣。
使用CDF生成列表的一个优点是可以使用二分搜索。当你需要O(n)个时间和空间进行预处理时,你可以得到O(k log n)个数字。由于普通的Python列表效率很低,你可以使用数组模块。
如果你坚持空间不变,你可以做到以下几点;O(n)时间,O(1)空间。
def random_distr(l):
r = random.uniform(0, 1)
s = 0
for item, prob in l:
s += prob
if s >= r:
return item
return item # Might occur because of floating point inaccuracies
基于其他解决方案,您可以生成累积分布(作为整数或浮点数),然后您可以使用平分使其更快
这是一个简单的例子(我在这里使用整数)
l=[(20, 'foo'), (60, 'banana'), (10, 'monkey'), (10, 'monkey2')]
def get_cdf(l):
ret=[]
c=0
for i in l: c+=i[0]; ret.append((c, i[1]))
return ret
def get_random_item(cdf):
return cdf[bisect.bisect_left(cdf, (random.randint(0, cdf[-1][0]),))][1]
cdf=get_cdf(l)
for i in range(100): print get_random_item(cdf),
get_cdf函数会将20、60、10、10转换为20、20+60、20+60+10、20+60+10+10
现在我们随机选择一个20+60+10+10的随机数。然后我们用二分法快速得到实际值