我有一个文件,不同的值的一些概率,例如:

1 0.1
2 0.05
3 0.05
4 0.2
5 0.4
6 0.2

我想用这个分布生成随机数。是否存在处理此问题的现有模块?自己编写代码是相当简单的(构建累积密度函数,生成一个随机值[0,1]并选择相应的值),但这似乎应该是一个常见的问题,可能有人已经为它创建了一个函数/模块。

我需要这个,因为我想生成一个生日列表(它不遵循标准随机模块中的任何分布)。


你可能想看看NumPy随机抽样分布


(好吧,我知道你想要薄膜包装,但也许这些自制的解决方案对你来说不够简洁。: -)

pdf = [(1, 0.1), (2, 0.05), (3, 0.05), (4, 0.2), (5, 0.4), (6, 0.2)]
cdf = [(i, sum(p for j,p in pdf if j < i)) for i,_ in pdf]
R = max(i for r in [random.random()] for i,c in cdf if c <= r)

我伪确认,这是通过目测这个表达式的输出:

sorted(max(i for r in [random.random()] for i,c in cdf if c <= r)
       for _ in range(1000))

根据物品的重量列出一个清单:

items = [1, 2, 3, 4, 5, 6]
probabilities= [0.1, 0.05, 0.05, 0.2, 0.4, 0.2]
# if the list of probs is normalized (sum(probs) == 1), omit this part
prob = sum(probabilities) # find sum of probs, to normalize them
c = (1.0)/prob # a multiplier to make a list of normalized probs
probabilities = map(lambda x: c*x, probabilities)
print probabilities

ml = max(probabilities, key=lambda x: len(str(x)) - str(x).find('.'))
ml = len(str(ml)) - str(ml).find('.') -1
amounts = [ int(x*(10**ml)) for x in probabilities]
itemsList = list()
for i in range(0, len(items)): # iterate through original items
  itemsList += items[i:i+1]*amounts[i]

# choose from itemsList randomly
print itemsList

优化可能是用最大公约数归一化,使目标列表更小。

另外,这可能会很有趣。


另一个答案,可能更快:)

distribution = [(1, 0.2), (2, 0.3), (3, 0.5)]  
# init distribution  
dlist = []  
sumchance = 0  
for value, chance in distribution:  
    sumchance += chance  
    dlist.append((value, sumchance))  
assert sumchance == 1.0 # not good assert because of float equality  

# get random value  
r = random.random()  
# for small distributions use lineair search  
if len(distribution) < 64: # don't know exact speed limit  
    for value, sumchance in dlist:  
        if r < sumchance:  
            return value  
else:  
    # else (not implemented) binary search algorithm  

使用CDF生成列表的一个优点是可以使用二分搜索。当你需要O(n)个时间和空间进行预处理时,你可以得到O(k log n)个数字。由于普通的Python列表效率很低,你可以使用数组模块。

如果你坚持空间不变,你可以做到以下几点;O(n)时间,O(1)空间。

def random_distr(l):
    r = random.uniform(0, 1)
    s = 0
    for item, prob in l:
        s += prob
        if s >= r:
            return item
    return item  # Might occur because of floating point inaccuracies

scipy.stats。Rv_discrete可能是您想要的。您可以通过values参数提供您的概率。然后,您可以使用分布对象的rvs()方法来生成随机数。

正如Eugene Pakhomov在评论中指出的那样,你也可以将p关键字参数传递给numpy.random.choice(),例如:

numpy.random.choice(numpy.arange(1, 7), p=[0.1, 0.05, 0.05, 0.2, 0.4, 0.2])

如果你使用的是Python 3.6或更高版本,你可以使用标准库中的random.choices() -请参阅Mark Dickinson的回答。


这些答案都不是特别明确或简单的。

这里有一个明确、简单、保证有效的方法。

accumulate_normalize_probability接受一个字典p,将符号映射到概率或频率。它输出可用的元组列表,从中进行选择。

def accumulate_normalize_values(p):
        pi = p.items() if isinstance(p,dict) else p
        accum_pi = []
        accum = 0
        for i in pi:
                accum_pi.append((i[0],i[1]+accum))
                accum += i[1]
        if accum == 0:
                raise Exception( "You are about to explode the universe. Continue ? Y/N " )
        normed_a = []
        for a in accum_pi:
                normed_a.append((a[0],a[1]*1.0/accum))
        return normed_a

收益率:

>>> accumulate_normalize_values( { 'a': 100, 'b' : 300, 'c' : 400, 'd' : 200  } )
[('a', 0.1), ('c', 0.5), ('b', 0.8), ('d', 1.0)]

为什么它有效

累积步骤将每个符号转换为它自身与前一个符号的概率或频率之间的间隔(或第一个符号的情况为0)。这些间隔可以通过简单地遍历列表,直到间隔0.0 -> 1.0(前面准备的)中的随机数小于或等于当前符号的间隔终点来进行选择(从而对所提供的分布进行抽样)。

规范化使我们不再需要确保所有内容的总和为某个值。归一化后,概率的“向量”总和为1.0。

从分布中选择和生成任意长样本的其余代码如下:

def select(symbol_intervals,random):
        print symbol_intervals,random
        i = 0
        while random > symbol_intervals[i][1]:
                i += 1
                if i >= len(symbol_intervals):
                        raise Exception( "What did you DO to that poor list?" )
        return symbol_intervals[i][0]


def gen_random(alphabet,length,probabilities=None):
        from random import random
        from itertools import repeat
        if probabilities is None:
                probabilities = dict(zip(alphabet,repeat(1.0)))
        elif len(probabilities) > 0 and isinstance(probabilities[0],(int,long,float)):
                probabilities = dict(zip(alphabet,probabilities)) #ordered
        usable_probabilities = accumulate_normalize_values(probabilities)
        gen = []
        while len(gen) < length:
                gen.append(select(usable_probabilities,random()))
        return gen

用法:

>>> gen_random (['a','b','c','d'],10,[100,300,400,200])
['d', 'b', 'b', 'a', 'c', 'c', 'b', 'c', 'c', 'c']   #<--- some of the time

也许有点晚了。但是你可以使用numpy.random.choice(),传递p参数:

val = numpy.random.choice(numpy.arange(1, 7), p=[0.1, 0.05, 0.05, 0.2, 0.4, 0.2])

from __future__ import division
import random
from collections import Counter


def num_gen(num_probs):
    # calculate minimum probability to normalize
    min_prob = min(prob for num, prob in num_probs)
    lst = []
    for num, prob in num_probs:
        # keep appending num to lst, proportional to its probability in the distribution
        for _ in range(int(prob/min_prob)):
            lst.append(num)
    # all elems in lst occur proportional to their distribution probablities
    while True:
        # pick a random index from lst
        ind = random.randint(0, len(lst)-1)
        yield lst[ind]

验证:

gen = num_gen([(1, 0.1),
               (2, 0.05),
               (3, 0.05),
               (4, 0.2),
               (5, 0.4),
               (6, 0.2)])
lst = []
times = 10000
for _ in range(times):
    lst.append(next(gen))
# Verify the created distribution:
for item, count in Counter(lst).iteritems():
    print '%d has %f probability' % (item, count/times)

1 has 0.099737 probability
2 has 0.050022 probability
3 has 0.049996 probability 
4 has 0.200154 probability
5 has 0.399791 probability
6 has 0.200300 probability

这里有一个更有效的方法:

只需使用'weights'数组调用以下函数(假设索引为相应的项)和no。所需样品的数量。可以很容易地修改此函数以处理有序对。

使用它们各自的概率返回采样/选择(带有替换)的索引(或项):

def resample(weights, n):
    beta = 0

    # Caveat: Assign max weight to max*2 for best results
    max_w = max(weights)*2

    # Pick an item uniformly at random, to start with
    current_item = random.randint(0,n-1)
    result = []

    for i in range(n):
        beta += random.uniform(0,max_w)

        while weights[current_item] < beta:
            beta -= weights[current_item]
            current_item = (current_item + 1) % n   # cyclic
        else:
            result.append(current_item)
    return result

关于while循环中使用的概念的简短说明。 我们从累积beta(均匀随机构造的累积值)中减少当前项的权重,并增加当前索引以找到与beta值匹配的项。


基于其他解决方案,您可以生成累积分布(作为整数或浮点数),然后您可以使用平分使其更快

这是一个简单的例子(我在这里使用整数)

l=[(20, 'foo'), (60, 'banana'), (10, 'monkey'), (10, 'monkey2')]
def get_cdf(l):
    ret=[]
    c=0
    for i in l: c+=i[0]; ret.append((c, i[1]))
    return ret

def get_random_item(cdf):
    return cdf[bisect.bisect_left(cdf, (random.randint(0, cdf[-1][0]),))][1]

cdf=get_cdf(l)
for i in range(100): print get_random_item(cdf),

get_cdf函数会将20、60、10、10转换为20、20+60、20+60+10、20+60+10+10

现在我们随机选择一个20+60+10+10的随机数。然后我们用二分法快速得到实际值


从Python 3.6开始,Python的标准库中就有了一个解决方案,即random.choices。

示例用法:让我们建立一个与OP问题中匹配的总体和权重:

>>> from random import choices
>>> population = [1, 2, 3, 4, 5, 6]
>>> weights = [0.1, 0.05, 0.05, 0.2, 0.4, 0.2]

现在choices(population, weights)生成一个样本,包含在一个长度为1的列表中:

>>> choices(population, weights)
[4]

可选的仅关键字参数k允许一次请求多个示例。这很有价值,因为有些准备工作是随机的。在生成样本之前,每次调用choice函数都要做的事情;通过一次生成多个样本,我们只需要做一次准备工作。这里我们生成一百万个样本,并使用集合。计数器来检查我们得到的分布是否与我们给出的权重大致匹配。

>>> million_samples = choices(population, weights, k=10**6)
>>> from collections import Counter
>>> Counter(million_samples)
Counter({5: 399616, 6: 200387, 4: 200117, 1: 99636, 3: 50219, 2: 50025})

我写了一个从自定义连续分布中抽取随机样本的解决方案。

我需要这个类似于你的用例(即生成随机日期与给定的概率分布)。

你只需要函数random_custDist和行samples=random_custDist(x0,x1,custDist=custDist,size=1000)。其余的都是装饰^^。

import numpy as np

#funtion
def random_custDist(x0,x1,custDist,size=None, nControl=10**6):
    #genearte a list of size random samples, obeying the distribution custDist
    #suggests random samples between x0 and x1 and accepts the suggestion with probability custDist(x)
    #custDist noes not need to be normalized. Add this condition to increase performance. 
    #Best performance for max_{x in [x0,x1]} custDist(x) = 1
    samples=[]
    nLoop=0
    while len(samples)<size and nLoop<nControl:
        x=np.random.uniform(low=x0,high=x1)
        prop=custDist(x)
        assert prop>=0 and prop<=1
        if np.random.uniform(low=0,high=1) <=prop:
            samples += [x]
        nLoop+=1
    return samples

#call
x0=2007
x1=2019
def custDist(x):
    if x<2010:
        return .3
    else:
        return (np.exp(x-2008)-1)/(np.exp(2019-2007)-1)
samples=random_custDist(x0,x1,custDist=custDist,size=1000)
print(samples)

#plot
import matplotlib.pyplot as plt
#hist
bins=np.linspace(x0,x1,int(x1-x0+1))
hist=np.histogram(samples, bins )[0]
hist=hist/np.sum(hist)
plt.bar( (bins[:-1]+bins[1:])/2, hist, width=.96, label='sample distribution')
#dist
grid=np.linspace(x0,x1,100)
discCustDist=np.array([custDist(x) for x in grid]) #distrete version
discCustDist*=1/(grid[1]-grid[0])/np.sum(discCustDist)
plt.plot(grid,discCustDist,label='custom distribustion (custDist)', color='C1', linewidth=4)
#decoration
plt.legend(loc=3,bbox_to_anchor=(1,0))
plt.show()

这个解决方案的性能肯定是可以改进的,但我更喜欢可读性。